How do I prove $zDelta(z+1) = Delta(z)$, where $Gamma(z)=1/Delta(z)$?












0












$begingroup$


EDIT notes: Deleted irrelevant information



I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.



My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    EDIT notes: Deleted irrelevant information



    I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.



    My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      0



      $begingroup$


      EDIT notes: Deleted irrelevant information



      I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.



      My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?










      share|cite|improve this question











      $endgroup$




      EDIT notes: Deleted irrelevant information



      I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.



      My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?







      complex-analysis gamma-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 12 at 17:01







      Idea Flux

















      asked Nov 30 '18 at 14:37









      Idea FluxIdea Flux

      86




      86






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Consider the telescoping sum
          $$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
          Then
          $$- log(1+z) =
          sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
          =
          sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$

          Apply exponential to get
          $$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
          Then
          $$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
          and we are done






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
            $endgroup$
            – Idea Flux
            Nov 30 '18 at 15:49










          • $begingroup$
            Thank you very much. It is a clean/neat proof!
            $endgroup$
            – Idea Flux
            Dec 3 '18 at 10:51










          • $begingroup$
            How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
            $endgroup$
            – Idea Flux
            Dec 4 '18 at 21:05












          • $begingroup$
            $1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
            $endgroup$
            – jjagmath
            Dec 4 '18 at 23:58












          • $begingroup$
            Thank you * character filling *
            $endgroup$
            – Idea Flux
            Dec 5 '18 at 11:29













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020161%2fhow-do-i-prove-z-deltaz1-deltaz-where-gammaz-1-deltaz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Consider the telescoping sum
          $$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
          Then
          $$- log(1+z) =
          sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
          =
          sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$

          Apply exponential to get
          $$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
          Then
          $$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
          and we are done






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
            $endgroup$
            – Idea Flux
            Nov 30 '18 at 15:49










          • $begingroup$
            Thank you very much. It is a clean/neat proof!
            $endgroup$
            – Idea Flux
            Dec 3 '18 at 10:51










          • $begingroup$
            How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
            $endgroup$
            – Idea Flux
            Dec 4 '18 at 21:05












          • $begingroup$
            $1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
            $endgroup$
            – jjagmath
            Dec 4 '18 at 23:58












          • $begingroup$
            Thank you * character filling *
            $endgroup$
            – Idea Flux
            Dec 5 '18 at 11:29


















          0












          $begingroup$

          Consider the telescoping sum
          $$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
          Then
          $$- log(1+z) =
          sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
          =
          sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$

          Apply exponential to get
          $$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
          Then
          $$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
          and we are done






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
            $endgroup$
            – Idea Flux
            Nov 30 '18 at 15:49










          • $begingroup$
            Thank you very much. It is a clean/neat proof!
            $endgroup$
            – Idea Flux
            Dec 3 '18 at 10:51










          • $begingroup$
            How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
            $endgroup$
            – Idea Flux
            Dec 4 '18 at 21:05












          • $begingroup$
            $1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
            $endgroup$
            – jjagmath
            Dec 4 '18 at 23:58












          • $begingroup$
            Thank you * character filling *
            $endgroup$
            – Idea Flux
            Dec 5 '18 at 11:29
















          0












          0








          0





          $begingroup$

          Consider the telescoping sum
          $$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
          Then
          $$- log(1+z) =
          sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
          =
          sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$

          Apply exponential to get
          $$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
          Then
          $$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
          and we are done






          share|cite|improve this answer









          $endgroup$



          Consider the telescoping sum
          $$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
          Then
          $$- log(1+z) =
          sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
          sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
          =
          sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$

          Apply exponential to get
          $$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
          Then
          $$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
          and we are done







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 30 '18 at 15:41









          jjagmathjjagmath

          2247




          2247












          • $begingroup$
            Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
            $endgroup$
            – Idea Flux
            Nov 30 '18 at 15:49










          • $begingroup$
            Thank you very much. It is a clean/neat proof!
            $endgroup$
            – Idea Flux
            Dec 3 '18 at 10:51










          • $begingroup$
            How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
            $endgroup$
            – Idea Flux
            Dec 4 '18 at 21:05












          • $begingroup$
            $1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
            $endgroup$
            – jjagmath
            Dec 4 '18 at 23:58












          • $begingroup$
            Thank you * character filling *
            $endgroup$
            – Idea Flux
            Dec 5 '18 at 11:29




















          • $begingroup$
            Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
            $endgroup$
            – Idea Flux
            Nov 30 '18 at 15:49










          • $begingroup$
            Thank you very much. It is a clean/neat proof!
            $endgroup$
            – Idea Flux
            Dec 3 '18 at 10:51










          • $begingroup$
            How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
            $endgroup$
            – Idea Flux
            Dec 4 '18 at 21:05












          • $begingroup$
            $1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
            $endgroup$
            – jjagmath
            Dec 4 '18 at 23:58












          • $begingroup$
            Thank you * character filling *
            $endgroup$
            – Idea Flux
            Dec 5 '18 at 11:29


















          $begingroup$
          Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
          $endgroup$
          – Idea Flux
          Nov 30 '18 at 15:49




          $begingroup$
          Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
          $endgroup$
          – Idea Flux
          Nov 30 '18 at 15:49












          $begingroup$
          Thank you very much. It is a clean/neat proof!
          $endgroup$
          – Idea Flux
          Dec 3 '18 at 10:51




          $begingroup$
          Thank you very much. It is a clean/neat proof!
          $endgroup$
          – Idea Flux
          Dec 3 '18 at 10:51












          $begingroup$
          How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
          $endgroup$
          – Idea Flux
          Dec 4 '18 at 21:05






          $begingroup$
          How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
          $endgroup$
          – Idea Flux
          Dec 4 '18 at 21:05














          $begingroup$
          $1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
          $endgroup$
          – jjagmath
          Dec 4 '18 at 23:58






          $begingroup$
          $1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
          $endgroup$
          – jjagmath
          Dec 4 '18 at 23:58














          $begingroup$
          Thank you * character filling *
          $endgroup$
          – Idea Flux
          Dec 5 '18 at 11:29






          $begingroup$
          Thank you * character filling *
          $endgroup$
          – Idea Flux
          Dec 5 '18 at 11:29




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020161%2fhow-do-i-prove-z-deltaz1-deltaz-where-gammaz-1-deltaz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

          Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

          A Topological Invariant for $pi_3(U(n))$