Find the sum of this series $sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$
up vote
0
down vote
favorite
Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$
real-analysis sequences-and-series
add a comment |
up vote
0
down vote
favorite
Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$
real-analysis sequences-and-series
By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$
real-analysis sequences-and-series
Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$
real-analysis sequences-and-series
real-analysis sequences-and-series
edited yesterday
Lorenzo B.
1,6222419
1,6222419
asked yesterday
dimpap
657
657
By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday
add a comment |
By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday
By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday
By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
Let $f(m)$
$$=dfrac{a+bm+cm^2}{2^m}$$
Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$
Use https://en.m.wikipedia.org/wiki/Telescoping_series
Super answer. thanks.
– hamam_Abdallah
yesterday
See also math.stackexchange.com/questions/593996/…
– lab bhattacharjee
yesterday
thanks very much!
– dimpap
yesterday
add a comment |
up vote
0
down vote
hint
For $-2<x<2$,
$$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$
Think differentiating both sides and make $x=1$.
Observe that the numerator can be written as
$$2n(n-1)-n+4$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Let $f(m)$
$$=dfrac{a+bm+cm^2}{2^m}$$
Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$
Use https://en.m.wikipedia.org/wiki/Telescoping_series
Super answer. thanks.
– hamam_Abdallah
yesterday
See also math.stackexchange.com/questions/593996/…
– lab bhattacharjee
yesterday
thanks very much!
– dimpap
yesterday
add a comment |
up vote
2
down vote
accepted
Let $f(m)$
$$=dfrac{a+bm+cm^2}{2^m}$$
Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$
Use https://en.m.wikipedia.org/wiki/Telescoping_series
Super answer. thanks.
– hamam_Abdallah
yesterday
See also math.stackexchange.com/questions/593996/…
– lab bhattacharjee
yesterday
thanks very much!
– dimpap
yesterday
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Let $f(m)$
$$=dfrac{a+bm+cm^2}{2^m}$$
Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$
Use https://en.m.wikipedia.org/wiki/Telescoping_series
Let $f(m)$
$$=dfrac{a+bm+cm^2}{2^m}$$
Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$
Use https://en.m.wikipedia.org/wiki/Telescoping_series
answered yesterday
lab bhattacharjee
220k15154270
220k15154270
Super answer. thanks.
– hamam_Abdallah
yesterday
See also math.stackexchange.com/questions/593996/…
– lab bhattacharjee
yesterday
thanks very much!
– dimpap
yesterday
add a comment |
Super answer. thanks.
– hamam_Abdallah
yesterday
See also math.stackexchange.com/questions/593996/…
– lab bhattacharjee
yesterday
thanks very much!
– dimpap
yesterday
Super answer. thanks.
– hamam_Abdallah
yesterday
Super answer. thanks.
– hamam_Abdallah
yesterday
See also math.stackexchange.com/questions/593996/…
– lab bhattacharjee
yesterday
See also math.stackexchange.com/questions/593996/…
– lab bhattacharjee
yesterday
thanks very much!
– dimpap
yesterday
thanks very much!
– dimpap
yesterday
add a comment |
up vote
0
down vote
hint
For $-2<x<2$,
$$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$
Think differentiating both sides and make $x=1$.
Observe that the numerator can be written as
$$2n(n-1)-n+4$$
add a comment |
up vote
0
down vote
hint
For $-2<x<2$,
$$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$
Think differentiating both sides and make $x=1$.
Observe that the numerator can be written as
$$2n(n-1)-n+4$$
add a comment |
up vote
0
down vote
up vote
0
down vote
hint
For $-2<x<2$,
$$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$
Think differentiating both sides and make $x=1$.
Observe that the numerator can be written as
$$2n(n-1)-n+4$$
hint
For $-2<x<2$,
$$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$
Think differentiating both sides and make $x=1$.
Observe that the numerator can be written as
$$2n(n-1)-n+4$$
edited yesterday
answered yesterday
hamam_Abdallah
36.5k21533
36.5k21533
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005214%2ffind-the-sum-of-this-series-sum-n-1-infty-frac2n2-3n42n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday