Find the sum of this series $sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$











up vote
0
down vote

favorite












Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$










share|cite|improve this question
























  • By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
    – Jack D'Aurizio
    yesterday















up vote
0
down vote

favorite












Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$










share|cite|improve this question
























  • By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
    – Jack D'Aurizio
    yesterday













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$










share|cite|improve this question















Can someone provide help in finding the sum of this series? $$sum_{n=1}^{infty}frac{2n^{2}-3n+4}{2^{n}}$$







real-analysis sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Lorenzo B.

1,6222419




1,6222419










asked yesterday









dimpap

657




657












  • By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
    – Jack D'Aurizio
    yesterday


















  • By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
    – Jack D'Aurizio
    yesterday
















By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday




By stars and bars we have $$ frac{1}{(1-x)^{n+1}}=sum_{mgeq 0}binom{m+n}{n}x^m $$ for any $xin(-1,1)$ and any $ninmathbb{N}$. By reindexing $$ sum_{ngeq 1}frac{2n^2-3n+4}{2^n} = sum_{mgeq 0}frac{2m^2+m+3}{2^{m+1}}=frac{1}{2}sum_{mgeq 0}frac{4binom{m+2}{2}-5binom{m+1}{1}+4binom{m+0}{0}}{2^m} $$ hence the LHS equals $$ frac{1}{2}left[4cdot 2^3-5cdot 2^2+4cdot 2^1right]=color{red}{10}. $$
– Jack D'Aurizio
yesterday










2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted










Let $f(m)$



$$=dfrac{a+bm+cm^2}{2^m}$$



Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$



Use https://en.m.wikipedia.org/wiki/Telescoping_series






share|cite|improve this answer





















  • Super answer. thanks.
    – hamam_Abdallah
    yesterday










  • See also math.stackexchange.com/questions/593996/…
    – lab bhattacharjee
    yesterday










  • thanks very much!
    – dimpap
    yesterday


















up vote
0
down vote













hint



For $-2<x<2$,



$$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$



Think differentiating both sides and make $x=1$.
Observe that the numerator can be written as
$$2n(n-1)-n+4$$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005214%2ffind-the-sum-of-this-series-sum-n-1-infty-frac2n2-3n42n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Let $f(m)$



    $$=dfrac{a+bm+cm^2}{2^m}$$



    Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$



    Use https://en.m.wikipedia.org/wiki/Telescoping_series






    share|cite|improve this answer





















    • Super answer. thanks.
      – hamam_Abdallah
      yesterday










    • See also math.stackexchange.com/questions/593996/…
      – lab bhattacharjee
      yesterday










    • thanks very much!
      – dimpap
      yesterday















    up vote
    2
    down vote



    accepted










    Let $f(m)$



    $$=dfrac{a+bm+cm^2}{2^m}$$



    Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$



    Use https://en.m.wikipedia.org/wiki/Telescoping_series






    share|cite|improve this answer





















    • Super answer. thanks.
      – hamam_Abdallah
      yesterday










    • See also math.stackexchange.com/questions/593996/…
      – lab bhattacharjee
      yesterday










    • thanks very much!
      – dimpap
      yesterday













    up vote
    2
    down vote



    accepted







    up vote
    2
    down vote



    accepted






    Let $f(m)$



    $$=dfrac{a+bm+cm^2}{2^m}$$



    Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$



    Use https://en.m.wikipedia.org/wiki/Telescoping_series






    share|cite|improve this answer












    Let $f(m)$



    $$=dfrac{a+bm+cm^2}{2^m}$$



    Set $dfrac{2n^2-3n+4}{2^n}=f(n+1)-f(n)$ and compare the coefficients of $n,n^2$ and the constants to find $a,b,c$



    Use https://en.m.wikipedia.org/wiki/Telescoping_series







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered yesterday









    lab bhattacharjee

    220k15154270




    220k15154270












    • Super answer. thanks.
      – hamam_Abdallah
      yesterday










    • See also math.stackexchange.com/questions/593996/…
      – lab bhattacharjee
      yesterday










    • thanks very much!
      – dimpap
      yesterday


















    • Super answer. thanks.
      – hamam_Abdallah
      yesterday










    • See also math.stackexchange.com/questions/593996/…
      – lab bhattacharjee
      yesterday










    • thanks very much!
      – dimpap
      yesterday
















    Super answer. thanks.
    – hamam_Abdallah
    yesterday




    Super answer. thanks.
    – hamam_Abdallah
    yesterday












    See also math.stackexchange.com/questions/593996/…
    – lab bhattacharjee
    yesterday




    See also math.stackexchange.com/questions/593996/…
    – lab bhattacharjee
    yesterday












    thanks very much!
    – dimpap
    yesterday




    thanks very much!
    – dimpap
    yesterday










    up vote
    0
    down vote













    hint



    For $-2<x<2$,



    $$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$



    Think differentiating both sides and make $x=1$.
    Observe that the numerator can be written as
    $$2n(n-1)-n+4$$






    share|cite|improve this answer



























      up vote
      0
      down vote













      hint



      For $-2<x<2$,



      $$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$



      Think differentiating both sides and make $x=1$.
      Observe that the numerator can be written as
      $$2n(n-1)-n+4$$






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        hint



        For $-2<x<2$,



        $$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$



        Think differentiating both sides and make $x=1$.
        Observe that the numerator can be written as
        $$2n(n-1)-n+4$$






        share|cite|improve this answer














        hint



        For $-2<x<2$,



        $$sum_{n=0}^{+infty}frac{x^n}{2^n}=frac{2}{2-x}$$



        Think differentiating both sides and make $x=1$.
        Observe that the numerator can be written as
        $$2n(n-1)-n+4$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited yesterday

























        answered yesterday









        hamam_Abdallah

        36.5k21533




        36.5k21533






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005214%2ffind-the-sum-of-this-series-sum-n-1-infty-frac2n2-3n42n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]