How do I prove that a spanning set when transformed spans the range of a linear map T?
up vote
0
down vote
favorite
I started out with the following reasoning: Consider a spanning set $v in V: v_1, ..., v_n$. By definition every element in $V$ is some linear combination of this list. By linearity, $T(alpha v_1 + ... + alpha v_n)$ = $alpha T(v_1) + ... +alpha T(v_n)$, which belongs to the Range of T.
I'm not sure how to finish this and put everything together.
linear-algebra linear-transformations
add a comment |
up vote
0
down vote
favorite
I started out with the following reasoning: Consider a spanning set $v in V: v_1, ..., v_n$. By definition every element in $V$ is some linear combination of this list. By linearity, $T(alpha v_1 + ... + alpha v_n)$ = $alpha T(v_1) + ... +alpha T(v_n)$, which belongs to the Range of T.
I'm not sure how to finish this and put everything together.
linear-algebra linear-transformations
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I started out with the following reasoning: Consider a spanning set $v in V: v_1, ..., v_n$. By definition every element in $V$ is some linear combination of this list. By linearity, $T(alpha v_1 + ... + alpha v_n)$ = $alpha T(v_1) + ... +alpha T(v_n)$, which belongs to the Range of T.
I'm not sure how to finish this and put everything together.
linear-algebra linear-transformations
I started out with the following reasoning: Consider a spanning set $v in V: v_1, ..., v_n$. By definition every element in $V$ is some linear combination of this list. By linearity, $T(alpha v_1 + ... + alpha v_n)$ = $alpha T(v_1) + ... +alpha T(v_n)$, which belongs to the Range of T.
I'm not sure how to finish this and put everything together.
linear-algebra linear-transformations
linear-algebra linear-transformations
asked 11 hours ago
Jaigus
1988
1988
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Let $w in text{Ran}{(T)}implies w = T(u), u in Vimplies u = a_1v_1+a_2v_2+cdots+a_nv_nimplies w = T(u) = a_1T(v_1)+a_2T(v_2)+cdots +a_nT(v_n)$. This implies the claim.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Let $w in text{Ran}{(T)}implies w = T(u), u in Vimplies u = a_1v_1+a_2v_2+cdots+a_nv_nimplies w = T(u) = a_1T(v_1)+a_2T(v_2)+cdots +a_nT(v_n)$. This implies the claim.
add a comment |
up vote
0
down vote
Let $w in text{Ran}{(T)}implies w = T(u), u in Vimplies u = a_1v_1+a_2v_2+cdots+a_nv_nimplies w = T(u) = a_1T(v_1)+a_2T(v_2)+cdots +a_nT(v_n)$. This implies the claim.
add a comment |
up vote
0
down vote
up vote
0
down vote
Let $w in text{Ran}{(T)}implies w = T(u), u in Vimplies u = a_1v_1+a_2v_2+cdots+a_nv_nimplies w = T(u) = a_1T(v_1)+a_2T(v_2)+cdots +a_nT(v_n)$. This implies the claim.
Let $w in text{Ran}{(T)}implies w = T(u), u in Vimplies u = a_1v_1+a_2v_2+cdots+a_nv_nimplies w = T(u) = a_1T(v_1)+a_2T(v_2)+cdots +a_nT(v_n)$. This implies the claim.
answered 10 hours ago
DeepSea
70.3k54487
70.3k54487
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004551%2fhow-do-i-prove-that-a-spanning-set-when-transformed-spans-the-range-of-a-linear%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown