Surjective differentiable map is an isometry











up vote
1
down vote

favorite
1












This is exercise 1.2 in Svetlana Katok's Fuchsian Groups.



$mathbb{H}$ is the upper half plane (with the hyperbolic metric), and $f:mathbb{H}rightarrowmathbb{H}$ is a surjective $C^1$ map. I want to show $f$ is an isometry (in terms of the hyperbolic metric) if and only if it preserves the Riemannian norm on the tangent bundle of $mathbb{H}$.



One direction I can do (isometry implies norm-preserving), but the other direction is giving me trouble. I've shown that if $f$ is norm-preserving, then it also preserves the length of curves, so that
$$ d(f(z),f(w))le d(z,w) $$



But I can't seem to show there's equality here. In particular, I can't show $f$ is injective. Am I missing something special about the upper half plane?










share|cite|improve this question






















  • Have you used the fact that $f$ must map a geodesic to a geodesic?
    – Ted Shifrin
    10 hours ago















up vote
1
down vote

favorite
1












This is exercise 1.2 in Svetlana Katok's Fuchsian Groups.



$mathbb{H}$ is the upper half plane (with the hyperbolic metric), and $f:mathbb{H}rightarrowmathbb{H}$ is a surjective $C^1$ map. I want to show $f$ is an isometry (in terms of the hyperbolic metric) if and only if it preserves the Riemannian norm on the tangent bundle of $mathbb{H}$.



One direction I can do (isometry implies norm-preserving), but the other direction is giving me trouble. I've shown that if $f$ is norm-preserving, then it also preserves the length of curves, so that
$$ d(f(z),f(w))le d(z,w) $$



But I can't seem to show there's equality here. In particular, I can't show $f$ is injective. Am I missing something special about the upper half plane?










share|cite|improve this question






















  • Have you used the fact that $f$ must map a geodesic to a geodesic?
    – Ted Shifrin
    10 hours ago













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





This is exercise 1.2 in Svetlana Katok's Fuchsian Groups.



$mathbb{H}$ is the upper half plane (with the hyperbolic metric), and $f:mathbb{H}rightarrowmathbb{H}$ is a surjective $C^1$ map. I want to show $f$ is an isometry (in terms of the hyperbolic metric) if and only if it preserves the Riemannian norm on the tangent bundle of $mathbb{H}$.



One direction I can do (isometry implies norm-preserving), but the other direction is giving me trouble. I've shown that if $f$ is norm-preserving, then it also preserves the length of curves, so that
$$ d(f(z),f(w))le d(z,w) $$



But I can't seem to show there's equality here. In particular, I can't show $f$ is injective. Am I missing something special about the upper half plane?










share|cite|improve this question













This is exercise 1.2 in Svetlana Katok's Fuchsian Groups.



$mathbb{H}$ is the upper half plane (with the hyperbolic metric), and $f:mathbb{H}rightarrowmathbb{H}$ is a surjective $C^1$ map. I want to show $f$ is an isometry (in terms of the hyperbolic metric) if and only if it preserves the Riemannian norm on the tangent bundle of $mathbb{H}$.



One direction I can do (isometry implies norm-preserving), but the other direction is giving me trouble. I've shown that if $f$ is norm-preserving, then it also preserves the length of curves, so that
$$ d(f(z),f(w))le d(z,w) $$



But I can't seem to show there's equality here. In particular, I can't show $f$ is injective. Am I missing something special about the upper half plane?







differential-geometry riemannian-geometry hyperbolic-geometry isometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 11 hours ago









Hempelicious

2010




2010












  • Have you used the fact that $f$ must map a geodesic to a geodesic?
    – Ted Shifrin
    10 hours ago


















  • Have you used the fact that $f$ must map a geodesic to a geodesic?
    – Ted Shifrin
    10 hours ago
















Have you used the fact that $f$ must map a geodesic to a geodesic?
– Ted Shifrin
10 hours ago




Have you used the fact that $f$ must map a geodesic to a geodesic?
– Ted Shifrin
10 hours ago















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004553%2fsurjective-differentiable-map-is-an-isometry%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004553%2fsurjective-differentiable-map-is-an-isometry%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]