Kind of passage to the limit in the sense of distributions
up vote
0
down vote
favorite
Suppose $B$ is a ball in $mathbb{R}^{n}$ with $n>1$, and $f$ a locally integrable function. Suppose $F$ is a closed set with empty interior and $M>0$ such that the distribution defined by $f$ satisfies
begin{equation}
int_{Bsetminus F}f(x-t)phi(t)dtleq M
end{equation} for all test function $phi$. We know that if we had
$$f(x)leq M$$ for all $xin Bsetminus F$, we could get the same inequality by passing to the limit (supposing that $f$ is continuous); is it possible, in the same way, to circumvent around $F$ in (1) and prove that (1) holds for integrals over $B$?
real-analysis integration distribution-theory
add a comment |
up vote
0
down vote
favorite
Suppose $B$ is a ball in $mathbb{R}^{n}$ with $n>1$, and $f$ a locally integrable function. Suppose $F$ is a closed set with empty interior and $M>0$ such that the distribution defined by $f$ satisfies
begin{equation}
int_{Bsetminus F}f(x-t)phi(t)dtleq M
end{equation} for all test function $phi$. We know that if we had
$$f(x)leq M$$ for all $xin Bsetminus F$, we could get the same inequality by passing to the limit (supposing that $f$ is continuous); is it possible, in the same way, to circumvent around $F$ in (1) and prove that (1) holds for integrals over $B$?
real-analysis integration distribution-theory
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose $B$ is a ball in $mathbb{R}^{n}$ with $n>1$, and $f$ a locally integrable function. Suppose $F$ is a closed set with empty interior and $M>0$ such that the distribution defined by $f$ satisfies
begin{equation}
int_{Bsetminus F}f(x-t)phi(t)dtleq M
end{equation} for all test function $phi$. We know that if we had
$$f(x)leq M$$ for all $xin Bsetminus F$, we could get the same inequality by passing to the limit (supposing that $f$ is continuous); is it possible, in the same way, to circumvent around $F$ in (1) and prove that (1) holds for integrals over $B$?
real-analysis integration distribution-theory
Suppose $B$ is a ball in $mathbb{R}^{n}$ with $n>1$, and $f$ a locally integrable function. Suppose $F$ is a closed set with empty interior and $M>0$ such that the distribution defined by $f$ satisfies
begin{equation}
int_{Bsetminus F}f(x-t)phi(t)dtleq M
end{equation} for all test function $phi$. We know that if we had
$$f(x)leq M$$ for all $xin Bsetminus F$, we could get the same inequality by passing to the limit (supposing that $f$ is continuous); is it possible, in the same way, to circumvent around $F$ in (1) and prove that (1) holds for integrals over $B$?
real-analysis integration distribution-theory
real-analysis integration distribution-theory
asked 9 hours ago
M. Rahmat
292211
292211
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004590%2fkind-of-passage-to-the-limit-in-the-sense-of-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown