How to solve this linear matrix equation











up vote
0
down vote

favorite












I have an equation with one unknown matrix variable $mathbf{M}$:



$$
frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
$$

$$
= frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
$$



Where $otimes$ denotes the Kroenecker product.



I know that
$$
mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
$$



And $mathbf{W}$ should somehow disappear out of the equation.
$mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.



How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?



ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    I have an equation with one unknown matrix variable $mathbf{M}$:



    $$
    frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
    $$

    $$
    = frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
    $$



    Where $otimes$ denotes the Kroenecker product.



    I know that
    $$
    mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
    $$



    And $mathbf{W}$ should somehow disappear out of the equation.
    $mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.



    How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?



    ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I have an equation with one unknown matrix variable $mathbf{M}$:



      $$
      frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
      $$

      $$
      = frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
      $$



      Where $otimes$ denotes the Kroenecker product.



      I know that
      $$
      mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
      $$



      And $mathbf{W}$ should somehow disappear out of the equation.
      $mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.



      How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?



      ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.










      share|cite|improve this question















      I have an equation with one unknown matrix variable $mathbf{M}$:



      $$
      frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
      $$

      $$
      = frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
      $$



      Where $otimes$ denotes the Kroenecker product.



      I know that
      $$
      mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
      $$



      And $mathbf{W}$ should somehow disappear out of the equation.
      $mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.



      How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?



      ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.







      linear-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday

























      asked 2 days ago









      Sandi

      1689




      1689



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003633%2fhow-to-solve-this-linear-matrix-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003633%2fhow-to-solve-this-linear-matrix-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          WPF add header to Image with URL pettitions [duplicate]