How to solve this linear matrix equation
up vote
0
down vote
favorite
I have an equation with one unknown matrix variable $mathbf{M}$:
$$
frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
$$
$$
= frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
$$
Where $otimes$ denotes the Kroenecker product.
I know that
$$
mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
$$
And $mathbf{W}$ should somehow disappear out of the equation.
$mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.
How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?
ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.
linear-algebra
add a comment |
up vote
0
down vote
favorite
I have an equation with one unknown matrix variable $mathbf{M}$:
$$
frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
$$
$$
= frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
$$
Where $otimes$ denotes the Kroenecker product.
I know that
$$
mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
$$
And $mathbf{W}$ should somehow disappear out of the equation.
$mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.
How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?
ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.
linear-algebra
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have an equation with one unknown matrix variable $mathbf{M}$:
$$
frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
$$
$$
= frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
$$
Where $otimes$ denotes the Kroenecker product.
I know that
$$
mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
$$
And $mathbf{W}$ should somehow disappear out of the equation.
$mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.
How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?
ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.
linear-algebra
I have an equation with one unknown matrix variable $mathbf{M}$:
$$
frac{1}{2}vec(mathbf{W})^T(mathbf{V} otimes mathbf{U})vec(mathbf{M}) + frac{1}{2}vec(mathbf{M})^T(mathbf{V} otimes mathbf{U})vec(mathbf{W})
$$
$$
= frac{1}{tau^2}vec(mathbf{W})^Tvec(mathbf{W}_0)+frac{1}{sigma^2}vec(mathbf{T})^Tvec(mathbf{WX})
$$
Where $otimes$ denotes the Kroenecker product.
I know that
$$
mathbf{V} otimes mathbf{U} = (frac{1}{tau^2}mathbf{I}_q + frac{1}{sigma^2}mathbf{X}mathbf{X}^T)otimes mathbf{I}_D
$$
And $mathbf{W}$ should somehow disappear out of the equation.
$mathbf{X}$, $mathbf{T}$, $mathbf{W}_0$, $tau$ and $sigma$ are known.
How can I solve for $mathbf{M}$ (ideally unvectorized $mathbf{M}$)?
ADDITIONAL INFORMATION: I know from my application that $mathbf{V} otimes mathbf{U}$ is symmetric.
linear-algebra
linear-algebra
edited yesterday
asked 2 days ago
Sandi
1689
1689
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003633%2fhow-to-solve-this-linear-matrix-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown