Is the convolution by BV function a BV function?
up vote
0
down vote
favorite
Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?
analysis geometric-measure-theory
add a comment |
up vote
0
down vote
favorite
Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?
analysis geometric-measure-theory
Added definition, thanks
– user600464
yesterday
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?
analysis geometric-measure-theory
Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?
analysis geometric-measure-theory
analysis geometric-measure-theory
edited yesterday
asked yesterday
user600464
1754
1754
Added definition, thanks
– user600464
yesterday
add a comment |
Added definition, thanks
– user600464
yesterday
Added definition, thanks
– user600464
yesterday
Added definition, thanks
– user600464
yesterday
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Denote the supremum in the question as $V_f$.
You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.
Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.
Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
&= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}
Now,
$$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
and since $g ge 0$
$$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$
Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$
You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Denote the supremum in the question as $V_f$.
You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.
Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.
Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
&= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}
Now,
$$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
and since $g ge 0$
$$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$
Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$
You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.
add a comment |
up vote
0
down vote
accepted
Denote the supremum in the question as $V_f$.
You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.
Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.
Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
&= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}
Now,
$$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
and since $g ge 0$
$$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$
Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$
You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Denote the supremum in the question as $V_f$.
You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.
Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.
Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
&= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}
Now,
$$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
and since $g ge 0$
$$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$
Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$
You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.
Denote the supremum in the question as $V_f$.
You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.
Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.
Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
&= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}
Now,
$$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
and since $g ge 0$
$$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$
Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$
You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.
answered yesterday
Umberto P.
37.9k13063
37.9k13063
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005169%2fis-the-convolution-by-bv-function-a-bv-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Added definition, thanks
– user600464
yesterday