Is the convolution by BV function a BV function?











up vote
0
down vote

favorite












Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?










share|cite|improve this question
























  • Added definition, thanks
    – user600464
    yesterday















up vote
0
down vote

favorite












Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?










share|cite|improve this question
























  • Added definition, thanks
    – user600464
    yesterday













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?










share|cite|improve this question















Let $BV(mathbb R^n)$ be the set of functions $fin L^1(mathbb R^n)$ such that
$$supBig{int_U f(nablacdotphi),dx,|,phiin C_c^1(mathbb R^n;mathbb R^n), |phi|leq 1Big}<infty$$
Suppose $fin BV(mathbb R^n)$ and $gin L^1(mathbb R^n)$. Is it true that $fast gin BV(mathbb R^n)$?







analysis geometric-measure-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday

























asked yesterday









user600464

1754




1754












  • Added definition, thanks
    – user600464
    yesterday


















  • Added definition, thanks
    – user600464
    yesterday
















Added definition, thanks
– user600464
yesterday




Added definition, thanks
– user600464
yesterday










1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










Denote the supremum in the question as $V_f$.



You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.



Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.



Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
&= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}

Now,
$$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
and since $g ge 0$
$$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$



Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$



You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005169%2fis-the-convolution-by-bv-function-a-bv-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote



    accepted










    Denote the supremum in the question as $V_f$.



    You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.



    Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.



    Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
    &= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}

    Now,
    $$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
    and since $g ge 0$
    $$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$



    Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$



    You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.






    share|cite|improve this answer

























      up vote
      0
      down vote



      accepted










      Denote the supremum in the question as $V_f$.



      You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.



      Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.



      Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
      &= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}

      Now,
      $$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
      and since $g ge 0$
      $$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$



      Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$



      You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.






      share|cite|improve this answer























        up vote
        0
        down vote



        accepted







        up vote
        0
        down vote



        accepted






        Denote the supremum in the question as $V_f$.



        You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.



        Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.



        Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
        &= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}

        Now,
        $$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
        and since $g ge 0$
        $$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$



        Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$



        You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.






        share|cite|improve this answer












        Denote the supremum in the question as $V_f$.



        You should be able to show that if $f in BV$ then the translate $f_y(x) = f(x-y)$ is also $BV$ and $V_{f_y} = V_f$.



        Let $f in BV(mathbb R^n)$ and $g in L^1(mathbb R^n)$. It is a standard result that $f ast g in L^1(mathbb R^n)$. Assume that $g ge 0$.



        Now let $phi in C_c^infty(mathbb R^n;mathbb R^n)$, $|phi| le 1$. Then begin{align*}int_{mathbb R^n} f ast g (nabla cdot phi) ,dx &= int_{mathbb R^n} int_{mathbb R^n} f(x-y) g(y) , dy (nabla cdot phi)(x) , dy dx \
        &= int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy end{align*}

        Now,
        $$int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx = int_{mathbb R^n} f_y(x) (nabla cdot phi)(x) , dx le V_{f_y} = V_f$$
        and since $g ge 0$
        $$ int_{mathbb R^n} left( int_{mathbb R^n} f(x-y) (nabla cdot phi)(x) , dx right) g(y) , dy le V_f int_{mathbb R^n} g(y) , dy = V_f |g|_{L^1}.$$



        Now take the sup over all admissible $phi$ to obtain $$V_{f ast g} le V_f |g|_{L^1}.$$



        You can remove the requirement that $g ge 0$ by considering $g^+$ and $g^-$ separately.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        Umberto P.

        37.9k13063




        37.9k13063






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005169%2fis-the-convolution-by-bv-function-a-bv-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]