Construction of eigenfunction for Hecke operators $T_p$
up vote
0
down vote
favorite
I am reading Theorem 2 from Atkin-Lehner's Hecke operators on $Gamma_0(m)$. Let $u=(u_1(tau),u_2(tau),..,u_n(tau))$ be an orthonormal basis for the space of cusp forms on $Gamma_0(m)$ with weight $k$. Let $A_p$ denote the matrix associated with each Hecke operator $T_p$ with respect to $u$. Then we take $A$ to be a unitary matrix which can simultaneously diagonalise all $A_p.$
Then how does it follow that each element of the new basis $f=Au$ is an eigenfunction of all the operators $T_p$?
My attempt: Need $T_p(f_i) = lambda_pf_i$ for all $p$. Since $A$ can simultaneously diagonalise all $A_p,$ I have $A_p = ADA^{-1}$ ($D$ is diagonal). Then, right multiply with $Au$ leading to $A_p(Au) = ADA^{-1}Au, = ADu. $ I can't proceed further.
Will this construction of eigenforms work for any set of operators?
Let me know if any more clarifications are needed.
modular-forms
add a comment |
up vote
0
down vote
favorite
I am reading Theorem 2 from Atkin-Lehner's Hecke operators on $Gamma_0(m)$. Let $u=(u_1(tau),u_2(tau),..,u_n(tau))$ be an orthonormal basis for the space of cusp forms on $Gamma_0(m)$ with weight $k$. Let $A_p$ denote the matrix associated with each Hecke operator $T_p$ with respect to $u$. Then we take $A$ to be a unitary matrix which can simultaneously diagonalise all $A_p.$
Then how does it follow that each element of the new basis $f=Au$ is an eigenfunction of all the operators $T_p$?
My attempt: Need $T_p(f_i) = lambda_pf_i$ for all $p$. Since $A$ can simultaneously diagonalise all $A_p,$ I have $A_p = ADA^{-1}$ ($D$ is diagonal). Then, right multiply with $Au$ leading to $A_p(Au) = ADA^{-1}Au, = ADu. $ I can't proceed further.
Will this construction of eigenforms work for any set of operators?
Let me know if any more clarifications are needed.
modular-forms
It is because the $T_p$ commute and $M_k(Gamma_0(m))$ is finite dimensional, so there exists a basis $U$ where they are all in Jordan normal form, and they are normal for the Peterson inner product, so they are diagonal in $U$ and $U$ is unitary for that inner product. Can you copy the article ?
– reuns
yesterday
@reuns No I could not. I seem to miss a point somewhere. I will try with this insight and come back.
– 1.414212
yesterday
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am reading Theorem 2 from Atkin-Lehner's Hecke operators on $Gamma_0(m)$. Let $u=(u_1(tau),u_2(tau),..,u_n(tau))$ be an orthonormal basis for the space of cusp forms on $Gamma_0(m)$ with weight $k$. Let $A_p$ denote the matrix associated with each Hecke operator $T_p$ with respect to $u$. Then we take $A$ to be a unitary matrix which can simultaneously diagonalise all $A_p.$
Then how does it follow that each element of the new basis $f=Au$ is an eigenfunction of all the operators $T_p$?
My attempt: Need $T_p(f_i) = lambda_pf_i$ for all $p$. Since $A$ can simultaneously diagonalise all $A_p,$ I have $A_p = ADA^{-1}$ ($D$ is diagonal). Then, right multiply with $Au$ leading to $A_p(Au) = ADA^{-1}Au, = ADu. $ I can't proceed further.
Will this construction of eigenforms work for any set of operators?
Let me know if any more clarifications are needed.
modular-forms
I am reading Theorem 2 from Atkin-Lehner's Hecke operators on $Gamma_0(m)$. Let $u=(u_1(tau),u_2(tau),..,u_n(tau))$ be an orthonormal basis for the space of cusp forms on $Gamma_0(m)$ with weight $k$. Let $A_p$ denote the matrix associated with each Hecke operator $T_p$ with respect to $u$. Then we take $A$ to be a unitary matrix which can simultaneously diagonalise all $A_p.$
Then how does it follow that each element of the new basis $f=Au$ is an eigenfunction of all the operators $T_p$?
My attempt: Need $T_p(f_i) = lambda_pf_i$ for all $p$. Since $A$ can simultaneously diagonalise all $A_p,$ I have $A_p = ADA^{-1}$ ($D$ is diagonal). Then, right multiply with $Au$ leading to $A_p(Au) = ADA^{-1}Au, = ADu. $ I can't proceed further.
Will this construction of eigenforms work for any set of operators?
Let me know if any more clarifications are needed.
modular-forms
modular-forms
asked yesterday
1.414212
133
133
It is because the $T_p$ commute and $M_k(Gamma_0(m))$ is finite dimensional, so there exists a basis $U$ where they are all in Jordan normal form, and they are normal for the Peterson inner product, so they are diagonal in $U$ and $U$ is unitary for that inner product. Can you copy the article ?
– reuns
yesterday
@reuns No I could not. I seem to miss a point somewhere. I will try with this insight and come back.
– 1.414212
yesterday
add a comment |
It is because the $T_p$ commute and $M_k(Gamma_0(m))$ is finite dimensional, so there exists a basis $U$ where they are all in Jordan normal form, and they are normal for the Peterson inner product, so they are diagonal in $U$ and $U$ is unitary for that inner product. Can you copy the article ?
– reuns
yesterday
@reuns No I could not. I seem to miss a point somewhere. I will try with this insight and come back.
– 1.414212
yesterday
It is because the $T_p$ commute and $M_k(Gamma_0(m))$ is finite dimensional, so there exists a basis $U$ where they are all in Jordan normal form, and they are normal for the Peterson inner product, so they are diagonal in $U$ and $U$ is unitary for that inner product. Can you copy the article ?
– reuns
yesterday
It is because the $T_p$ commute and $M_k(Gamma_0(m))$ is finite dimensional, so there exists a basis $U$ where they are all in Jordan normal form, and they are normal for the Peterson inner product, so they are diagonal in $U$ and $U$ is unitary for that inner product. Can you copy the article ?
– reuns
yesterday
@reuns No I could not. I seem to miss a point somewhere. I will try with this insight and come back.
– 1.414212
yesterday
@reuns No I could not. I seem to miss a point somewhere. I will try with this insight and come back.
– 1.414212
yesterday
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005149%2fconstruction-of-eigenfunction-for-hecke-operators-t-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
It is because the $T_p$ commute and $M_k(Gamma_0(m))$ is finite dimensional, so there exists a basis $U$ where they are all in Jordan normal form, and they are normal for the Peterson inner product, so they are diagonal in $U$ and $U$ is unitary for that inner product. Can you copy the article ?
– reuns
yesterday
@reuns No I could not. I seem to miss a point somewhere. I will try with this insight and come back.
– 1.414212
yesterday