What is the Maximum Value of $x^T Ax$?
up vote
3
down vote
favorite
Let $A$ be the matrix $begin{bmatrix}3 &1 \ 1&2end{bmatrix}$. What is the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$?
- $5$
- $frac{(5 + sqrt{5})}{2}$
- $3$
- $frac{(5 - sqrt{5})}{2}$
Eigenvalues of $A$ are $frac{(5 pm sqrt{5})}{2}$
My question is: what is $x^T Ax$ ? Can you explain little bit please?
linear-algebra matrices eigenvalues-eigenvectors
add a comment |
up vote
3
down vote
favorite
Let $A$ be the matrix $begin{bmatrix}3 &1 \ 1&2end{bmatrix}$. What is the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$?
- $5$
- $frac{(5 + sqrt{5})}{2}$
- $3$
- $frac{(5 - sqrt{5})}{2}$
Eigenvalues of $A$ are $frac{(5 pm sqrt{5})}{2}$
My question is: what is $x^T Ax$ ? Can you explain little bit please?
linear-algebra matrices eigenvalues-eigenvectors
1
$x=(x_1,x_2)^T$ then $x^TAx=(x_1,x_2)A(x_1,x_2)^T$
– Kushal Bhuyan
Nov 30 '15 at 12:14
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Let $A$ be the matrix $begin{bmatrix}3 &1 \ 1&2end{bmatrix}$. What is the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$?
- $5$
- $frac{(5 + sqrt{5})}{2}$
- $3$
- $frac{(5 - sqrt{5})}{2}$
Eigenvalues of $A$ are $frac{(5 pm sqrt{5})}{2}$
My question is: what is $x^T Ax$ ? Can you explain little bit please?
linear-algebra matrices eigenvalues-eigenvectors
Let $A$ be the matrix $begin{bmatrix}3 &1 \ 1&2end{bmatrix}$. What is the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$?
- $5$
- $frac{(5 + sqrt{5})}{2}$
- $3$
- $frac{(5 - sqrt{5})}{2}$
Eigenvalues of $A$ are $frac{(5 pm sqrt{5})}{2}$
My question is: what is $x^T Ax$ ? Can you explain little bit please?
linear-algebra matrices eigenvalues-eigenvectors
linear-algebra matrices eigenvalues-eigenvectors
edited Dec 28 '15 at 12:56
H. R.
9,31093261
9,31093261
asked Nov 30 '15 at 12:12
Mithlesh Upadhyay
2,88882661
2,88882661
1
$x=(x_1,x_2)^T$ then $x^TAx=(x_1,x_2)A(x_1,x_2)^T$
– Kushal Bhuyan
Nov 30 '15 at 12:14
add a comment |
1
$x=(x_1,x_2)^T$ then $x^TAx=(x_1,x_2)A(x_1,x_2)^T$
– Kushal Bhuyan
Nov 30 '15 at 12:14
1
1
$x=(x_1,x_2)^T$ then $x^TAx=(x_1,x_2)A(x_1,x_2)^T$
– Kushal Bhuyan
Nov 30 '15 at 12:14
$x=(x_1,x_2)^T$ then $x^TAx=(x_1,x_2)A(x_1,x_2)^T$
– Kushal Bhuyan
Nov 30 '15 at 12:14
add a comment |
5 Answers
5
active
oldest
votes
up vote
3
down vote
accepted
If $xneq 0$ is an eigenvector of $A$ with unit length and associated eigenvalue $lambda$, then $x^TAx=x^Tlambda x=lambda x^Tx = lambda$. So the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$ is simply the value of the largest eigenvalue of $A$.
As pointed out by @Ant, the quantity $x^TAx$ arise in the Rayleigh quotient associated to $A$ (note that $A$ is symmetric). In fact, one can show that the eigenvectors (resp. eigenvalues) of a symmetric matrix $M$ are the critical points (resp. values) of the function
$$R(x)=frac{x^TMx}{x^Tx}$$
which is called the Rayleigh quotient associated to $M$.
add a comment |
up vote
3
down vote
This is an immediate application of this result from Raleigh.. https://en.m.wikipedia.org/wiki/Rayleigh_quotient
Thanks for nice article/answer.
– Mithlesh Upadhyay
Nov 30 '15 at 12:49
add a comment |
up vote
2
down vote
OK, Let us say that the eigenvalue of $A$ is $lambda$ and then call the corresponding eigenvector $x_{lambda}$ and hence
$$Ax_{lambda}=lambda x_{lambda}$$
and observe that
$$x_lambda ^TA{x_lambda } = lambda x_lambda ^T{x_lambda } = lambda (1) = lambda $$
so you should find the maximum eigenvalue of $A$. So the maximum value of the quadratic form will be $frac{5 + sqrt{5}}{2}$.
1
Thanks for beautiful explanation.
– Mithlesh Upadhyay
Nov 30 '15 at 12:46
1
@MithleshUpadhyay: You are welcome! :)
– H. R.
Nov 30 '15 at 13:50
add a comment |
up vote
1
down vote
$$x^TAx=begin{bmatrix} x_1 & x_2 end{bmatrix}begin{bmatrix} 3 & 1 \ 1 & 2 end{bmatrix}begin{bmatrix} x_1 \ x_2 end{bmatrix}= 3x_1^2 + 2x_1x_2 + 2x_2^2$$
I need to find maximum value, from this function, rt?
– Mithlesh Upadhyay
Nov 30 '15 at 12:24
Using the (unit) eigenvectors, yes.
– Nigel Overmars
Nov 30 '15 at 12:25
add a comment |
up vote
0
down vote
Here $A=begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}$
For finding the eigen value:
Chracteristic equation:$|A-lambda I|=0$ where $I$ is called identity matrix.
$Rightarrow|A-lambda I|=begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-lambdabegin{vmatrix} 1&0 \ 0 & 1 end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-begin{vmatrix} lambda&0 \ 0 & lambda end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3-lambda &1 \ 1 & 2-lambda end{vmatrix}=0$
$Rightarrow(3-lambda)(2-lambda)-1=0$
$Rightarrow 6-3lambda-2lambda+lambda^{2}-1=0$
$Rightarrow lambda^{2}-5lambda+5=0$
Now$,lambda =frac{-(-5)pm sqrt{25-20}}{2}$
$lambda =frac{5pm sqrt{5}}{2}$
So$,lambda_{1} =frac{5+sqrt{5}}{2}$ and $lambda_{2} =frac{5-sqrt{5}}{2}$
Let Eigen vector $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}_{2times 1}$
Now find the Eigen Vectors:
$AX=lambda X$
$Rightarrow AX-lambda X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow(A-lambda I )X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow begin{bmatrix} 3-lambda &1 \ 1 & 2-lambda end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$------------$>(1)$
Put $lambda=frac{5+sqrt{5}}{2}$
$Rightarrow begin{bmatrix} 3-(frac{5+sqrt{5}}{2}) &1 \ 1 & 2-(frac{5+sqrt{5}}{2}) end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{6-5-sqrt{5}}{2} &1 \ 1 &frac{4-5-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-sqrt{5}}{2} &1 \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Perform some row operation
$R_{1}rightarrowfrac{1+sqrt{5}}{2}R_{1}$
$Rightarrow begin{bmatrix}(frac{1-sqrt{5}}{2}).(frac{1+sqrt{5}}{2})&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-5}{4}&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Again do some operation $R_{2}rightarrow R_{2}+R_{1}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 0 &0 end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Here $Rank (A)=1$ and $number$ $of$ $unknowns$ $ =2$
clearly see $r(A)<UK(1<2),$So $UK-r(A)=2-1=1$ value assign to the one unknowns.[This is case of infinite solutions]
So$,x_{2}=k$ and $-x_{1}+(frac{1+sqrt{5}}{2})x_{2}=0$
$ -x_{1}=-(frac{1+sqrt{5}}{2})k$
$ x_{1}=(frac{1+sqrt{5}}{2})k$
Therefor $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix}(frac{1+sqrt{5}}{2})k \k end{bmatrix}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1+sqrt{5}}{2})^{2}+1^{2}}=1.9$
$hat{u}=frac{begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}}{1.9}$
$hat{u}=begin{bmatrix} 0.85\ 0.52 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} 0.85 \0.52 end{bmatrix}$ and $x^{T}=begin{bmatrix} 0.85 &0.52 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} 0.85 &0.52 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} 0.85 \0.52 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}$
and similarly do for $lambda=frac{5-sqrt{5}}{2}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1-sqrt{5}}{2})^{2}+1^{2}}=1.2$
$hat{u}=frac{begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}}{1.2}$
$hat{u}=begin{bmatrix} -0.52\ 0.83 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} -0.52\0.83 end{bmatrix}$ and $x^{T}=begin{bmatrix} -0.52 &0.83 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} -0.52 &0.83 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} -0.52 \0.83 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}$
So,I got maximum value $x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5+sqrt{5}}{2} end{bmatrix}$
and minimum value $x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5-sqrt{5}}{2} end{bmatrix}$
add a comment |
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
If $xneq 0$ is an eigenvector of $A$ with unit length and associated eigenvalue $lambda$, then $x^TAx=x^Tlambda x=lambda x^Tx = lambda$. So the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$ is simply the value of the largest eigenvalue of $A$.
As pointed out by @Ant, the quantity $x^TAx$ arise in the Rayleigh quotient associated to $A$ (note that $A$ is symmetric). In fact, one can show that the eigenvectors (resp. eigenvalues) of a symmetric matrix $M$ are the critical points (resp. values) of the function
$$R(x)=frac{x^TMx}{x^Tx}$$
which is called the Rayleigh quotient associated to $M$.
add a comment |
up vote
3
down vote
accepted
If $xneq 0$ is an eigenvector of $A$ with unit length and associated eigenvalue $lambda$, then $x^TAx=x^Tlambda x=lambda x^Tx = lambda$. So the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$ is simply the value of the largest eigenvalue of $A$.
As pointed out by @Ant, the quantity $x^TAx$ arise in the Rayleigh quotient associated to $A$ (note that $A$ is symmetric). In fact, one can show that the eigenvectors (resp. eigenvalues) of a symmetric matrix $M$ are the critical points (resp. values) of the function
$$R(x)=frac{x^TMx}{x^Tx}$$
which is called the Rayleigh quotient associated to $M$.
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
If $xneq 0$ is an eigenvector of $A$ with unit length and associated eigenvalue $lambda$, then $x^TAx=x^Tlambda x=lambda x^Tx = lambda$. So the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$ is simply the value of the largest eigenvalue of $A$.
As pointed out by @Ant, the quantity $x^TAx$ arise in the Rayleigh quotient associated to $A$ (note that $A$ is symmetric). In fact, one can show that the eigenvectors (resp. eigenvalues) of a symmetric matrix $M$ are the critical points (resp. values) of the function
$$R(x)=frac{x^TMx}{x^Tx}$$
which is called the Rayleigh quotient associated to $M$.
If $xneq 0$ is an eigenvector of $A$ with unit length and associated eigenvalue $lambda$, then $x^TAx=x^Tlambda x=lambda x^Tx = lambda$. So the maximum value of $x^T Ax$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A$ is simply the value of the largest eigenvalue of $A$.
As pointed out by @Ant, the quantity $x^TAx$ arise in the Rayleigh quotient associated to $A$ (note that $A$ is symmetric). In fact, one can show that the eigenvectors (resp. eigenvalues) of a symmetric matrix $M$ are the critical points (resp. values) of the function
$$R(x)=frac{x^TMx}{x^Tx}$$
which is called the Rayleigh quotient associated to $M$.
edited Nov 30 '15 at 14:51
answered Nov 30 '15 at 12:41
Surb
37k94375
37k94375
add a comment |
add a comment |
up vote
3
down vote
This is an immediate application of this result from Raleigh.. https://en.m.wikipedia.org/wiki/Rayleigh_quotient
Thanks for nice article/answer.
– Mithlesh Upadhyay
Nov 30 '15 at 12:49
add a comment |
up vote
3
down vote
This is an immediate application of this result from Raleigh.. https://en.m.wikipedia.org/wiki/Rayleigh_quotient
Thanks for nice article/answer.
– Mithlesh Upadhyay
Nov 30 '15 at 12:49
add a comment |
up vote
3
down vote
up vote
3
down vote
This is an immediate application of this result from Raleigh.. https://en.m.wikipedia.org/wiki/Rayleigh_quotient
This is an immediate application of this result from Raleigh.. https://en.m.wikipedia.org/wiki/Rayleigh_quotient
answered Nov 30 '15 at 12:33
Ant
17.3k22873
17.3k22873
Thanks for nice article/answer.
– Mithlesh Upadhyay
Nov 30 '15 at 12:49
add a comment |
Thanks for nice article/answer.
– Mithlesh Upadhyay
Nov 30 '15 at 12:49
Thanks for nice article/answer.
– Mithlesh Upadhyay
Nov 30 '15 at 12:49
Thanks for nice article/answer.
– Mithlesh Upadhyay
Nov 30 '15 at 12:49
add a comment |
up vote
2
down vote
OK, Let us say that the eigenvalue of $A$ is $lambda$ and then call the corresponding eigenvector $x_{lambda}$ and hence
$$Ax_{lambda}=lambda x_{lambda}$$
and observe that
$$x_lambda ^TA{x_lambda } = lambda x_lambda ^T{x_lambda } = lambda (1) = lambda $$
so you should find the maximum eigenvalue of $A$. So the maximum value of the quadratic form will be $frac{5 + sqrt{5}}{2}$.
1
Thanks for beautiful explanation.
– Mithlesh Upadhyay
Nov 30 '15 at 12:46
1
@MithleshUpadhyay: You are welcome! :)
– H. R.
Nov 30 '15 at 13:50
add a comment |
up vote
2
down vote
OK, Let us say that the eigenvalue of $A$ is $lambda$ and then call the corresponding eigenvector $x_{lambda}$ and hence
$$Ax_{lambda}=lambda x_{lambda}$$
and observe that
$$x_lambda ^TA{x_lambda } = lambda x_lambda ^T{x_lambda } = lambda (1) = lambda $$
so you should find the maximum eigenvalue of $A$. So the maximum value of the quadratic form will be $frac{5 + sqrt{5}}{2}$.
1
Thanks for beautiful explanation.
– Mithlesh Upadhyay
Nov 30 '15 at 12:46
1
@MithleshUpadhyay: You are welcome! :)
– H. R.
Nov 30 '15 at 13:50
add a comment |
up vote
2
down vote
up vote
2
down vote
OK, Let us say that the eigenvalue of $A$ is $lambda$ and then call the corresponding eigenvector $x_{lambda}$ and hence
$$Ax_{lambda}=lambda x_{lambda}$$
and observe that
$$x_lambda ^TA{x_lambda } = lambda x_lambda ^T{x_lambda } = lambda (1) = lambda $$
so you should find the maximum eigenvalue of $A$. So the maximum value of the quadratic form will be $frac{5 + sqrt{5}}{2}$.
OK, Let us say that the eigenvalue of $A$ is $lambda$ and then call the corresponding eigenvector $x_{lambda}$ and hence
$$Ax_{lambda}=lambda x_{lambda}$$
and observe that
$$x_lambda ^TA{x_lambda } = lambda x_lambda ^T{x_lambda } = lambda (1) = lambda $$
so you should find the maximum eigenvalue of $A$. So the maximum value of the quadratic form will be $frac{5 + sqrt{5}}{2}$.
edited Nov 30 '15 at 13:50
answered Nov 30 '15 at 12:41
H. R.
9,31093261
9,31093261
1
Thanks for beautiful explanation.
– Mithlesh Upadhyay
Nov 30 '15 at 12:46
1
@MithleshUpadhyay: You are welcome! :)
– H. R.
Nov 30 '15 at 13:50
add a comment |
1
Thanks for beautiful explanation.
– Mithlesh Upadhyay
Nov 30 '15 at 12:46
1
@MithleshUpadhyay: You are welcome! :)
– H. R.
Nov 30 '15 at 13:50
1
1
Thanks for beautiful explanation.
– Mithlesh Upadhyay
Nov 30 '15 at 12:46
Thanks for beautiful explanation.
– Mithlesh Upadhyay
Nov 30 '15 at 12:46
1
1
@MithleshUpadhyay: You are welcome! :)
– H. R.
Nov 30 '15 at 13:50
@MithleshUpadhyay: You are welcome! :)
– H. R.
Nov 30 '15 at 13:50
add a comment |
up vote
1
down vote
$$x^TAx=begin{bmatrix} x_1 & x_2 end{bmatrix}begin{bmatrix} 3 & 1 \ 1 & 2 end{bmatrix}begin{bmatrix} x_1 \ x_2 end{bmatrix}= 3x_1^2 + 2x_1x_2 + 2x_2^2$$
I need to find maximum value, from this function, rt?
– Mithlesh Upadhyay
Nov 30 '15 at 12:24
Using the (unit) eigenvectors, yes.
– Nigel Overmars
Nov 30 '15 at 12:25
add a comment |
up vote
1
down vote
$$x^TAx=begin{bmatrix} x_1 & x_2 end{bmatrix}begin{bmatrix} 3 & 1 \ 1 & 2 end{bmatrix}begin{bmatrix} x_1 \ x_2 end{bmatrix}= 3x_1^2 + 2x_1x_2 + 2x_2^2$$
I need to find maximum value, from this function, rt?
– Mithlesh Upadhyay
Nov 30 '15 at 12:24
Using the (unit) eigenvectors, yes.
– Nigel Overmars
Nov 30 '15 at 12:25
add a comment |
up vote
1
down vote
up vote
1
down vote
$$x^TAx=begin{bmatrix} x_1 & x_2 end{bmatrix}begin{bmatrix} 3 & 1 \ 1 & 2 end{bmatrix}begin{bmatrix} x_1 \ x_2 end{bmatrix}= 3x_1^2 + 2x_1x_2 + 2x_2^2$$
$$x^TAx=begin{bmatrix} x_1 & x_2 end{bmatrix}begin{bmatrix} 3 & 1 \ 1 & 2 end{bmatrix}begin{bmatrix} x_1 \ x_2 end{bmatrix}= 3x_1^2 + 2x_1x_2 + 2x_2^2$$
answered Nov 30 '15 at 12:20
Nigel Overmars
2,59911225
2,59911225
I need to find maximum value, from this function, rt?
– Mithlesh Upadhyay
Nov 30 '15 at 12:24
Using the (unit) eigenvectors, yes.
– Nigel Overmars
Nov 30 '15 at 12:25
add a comment |
I need to find maximum value, from this function, rt?
– Mithlesh Upadhyay
Nov 30 '15 at 12:24
Using the (unit) eigenvectors, yes.
– Nigel Overmars
Nov 30 '15 at 12:25
I need to find maximum value, from this function, rt?
– Mithlesh Upadhyay
Nov 30 '15 at 12:24
I need to find maximum value, from this function, rt?
– Mithlesh Upadhyay
Nov 30 '15 at 12:24
Using the (unit) eigenvectors, yes.
– Nigel Overmars
Nov 30 '15 at 12:25
Using the (unit) eigenvectors, yes.
– Nigel Overmars
Nov 30 '15 at 12:25
add a comment |
up vote
0
down vote
Here $A=begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}$
For finding the eigen value:
Chracteristic equation:$|A-lambda I|=0$ where $I$ is called identity matrix.
$Rightarrow|A-lambda I|=begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-lambdabegin{vmatrix} 1&0 \ 0 & 1 end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-begin{vmatrix} lambda&0 \ 0 & lambda end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3-lambda &1 \ 1 & 2-lambda end{vmatrix}=0$
$Rightarrow(3-lambda)(2-lambda)-1=0$
$Rightarrow 6-3lambda-2lambda+lambda^{2}-1=0$
$Rightarrow lambda^{2}-5lambda+5=0$
Now$,lambda =frac{-(-5)pm sqrt{25-20}}{2}$
$lambda =frac{5pm sqrt{5}}{2}$
So$,lambda_{1} =frac{5+sqrt{5}}{2}$ and $lambda_{2} =frac{5-sqrt{5}}{2}$
Let Eigen vector $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}_{2times 1}$
Now find the Eigen Vectors:
$AX=lambda X$
$Rightarrow AX-lambda X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow(A-lambda I )X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow begin{bmatrix} 3-lambda &1 \ 1 & 2-lambda end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$------------$>(1)$
Put $lambda=frac{5+sqrt{5}}{2}$
$Rightarrow begin{bmatrix} 3-(frac{5+sqrt{5}}{2}) &1 \ 1 & 2-(frac{5+sqrt{5}}{2}) end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{6-5-sqrt{5}}{2} &1 \ 1 &frac{4-5-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-sqrt{5}}{2} &1 \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Perform some row operation
$R_{1}rightarrowfrac{1+sqrt{5}}{2}R_{1}$
$Rightarrow begin{bmatrix}(frac{1-sqrt{5}}{2}).(frac{1+sqrt{5}}{2})&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-5}{4}&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Again do some operation $R_{2}rightarrow R_{2}+R_{1}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 0 &0 end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Here $Rank (A)=1$ and $number$ $of$ $unknowns$ $ =2$
clearly see $r(A)<UK(1<2),$So $UK-r(A)=2-1=1$ value assign to the one unknowns.[This is case of infinite solutions]
So$,x_{2}=k$ and $-x_{1}+(frac{1+sqrt{5}}{2})x_{2}=0$
$ -x_{1}=-(frac{1+sqrt{5}}{2})k$
$ x_{1}=(frac{1+sqrt{5}}{2})k$
Therefor $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix}(frac{1+sqrt{5}}{2})k \k end{bmatrix}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1+sqrt{5}}{2})^{2}+1^{2}}=1.9$
$hat{u}=frac{begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}}{1.9}$
$hat{u}=begin{bmatrix} 0.85\ 0.52 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} 0.85 \0.52 end{bmatrix}$ and $x^{T}=begin{bmatrix} 0.85 &0.52 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} 0.85 &0.52 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} 0.85 \0.52 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}$
and similarly do for $lambda=frac{5-sqrt{5}}{2}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1-sqrt{5}}{2})^{2}+1^{2}}=1.2$
$hat{u}=frac{begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}}{1.2}$
$hat{u}=begin{bmatrix} -0.52\ 0.83 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} -0.52\0.83 end{bmatrix}$ and $x^{T}=begin{bmatrix} -0.52 &0.83 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} -0.52 &0.83 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} -0.52 \0.83 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}$
So,I got maximum value $x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5+sqrt{5}}{2} end{bmatrix}$
and minimum value $x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5-sqrt{5}}{2} end{bmatrix}$
add a comment |
up vote
0
down vote
Here $A=begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}$
For finding the eigen value:
Chracteristic equation:$|A-lambda I|=0$ where $I$ is called identity matrix.
$Rightarrow|A-lambda I|=begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-lambdabegin{vmatrix} 1&0 \ 0 & 1 end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-begin{vmatrix} lambda&0 \ 0 & lambda end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3-lambda &1 \ 1 & 2-lambda end{vmatrix}=0$
$Rightarrow(3-lambda)(2-lambda)-1=0$
$Rightarrow 6-3lambda-2lambda+lambda^{2}-1=0$
$Rightarrow lambda^{2}-5lambda+5=0$
Now$,lambda =frac{-(-5)pm sqrt{25-20}}{2}$
$lambda =frac{5pm sqrt{5}}{2}$
So$,lambda_{1} =frac{5+sqrt{5}}{2}$ and $lambda_{2} =frac{5-sqrt{5}}{2}$
Let Eigen vector $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}_{2times 1}$
Now find the Eigen Vectors:
$AX=lambda X$
$Rightarrow AX-lambda X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow(A-lambda I )X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow begin{bmatrix} 3-lambda &1 \ 1 & 2-lambda end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$------------$>(1)$
Put $lambda=frac{5+sqrt{5}}{2}$
$Rightarrow begin{bmatrix} 3-(frac{5+sqrt{5}}{2}) &1 \ 1 & 2-(frac{5+sqrt{5}}{2}) end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{6-5-sqrt{5}}{2} &1 \ 1 &frac{4-5-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-sqrt{5}}{2} &1 \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Perform some row operation
$R_{1}rightarrowfrac{1+sqrt{5}}{2}R_{1}$
$Rightarrow begin{bmatrix}(frac{1-sqrt{5}}{2}).(frac{1+sqrt{5}}{2})&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-5}{4}&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Again do some operation $R_{2}rightarrow R_{2}+R_{1}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 0 &0 end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Here $Rank (A)=1$ and $number$ $of$ $unknowns$ $ =2$
clearly see $r(A)<UK(1<2),$So $UK-r(A)=2-1=1$ value assign to the one unknowns.[This is case of infinite solutions]
So$,x_{2}=k$ and $-x_{1}+(frac{1+sqrt{5}}{2})x_{2}=0$
$ -x_{1}=-(frac{1+sqrt{5}}{2})k$
$ x_{1}=(frac{1+sqrt{5}}{2})k$
Therefor $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix}(frac{1+sqrt{5}}{2})k \k end{bmatrix}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1+sqrt{5}}{2})^{2}+1^{2}}=1.9$
$hat{u}=frac{begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}}{1.9}$
$hat{u}=begin{bmatrix} 0.85\ 0.52 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} 0.85 \0.52 end{bmatrix}$ and $x^{T}=begin{bmatrix} 0.85 &0.52 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} 0.85 &0.52 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} 0.85 \0.52 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}$
and similarly do for $lambda=frac{5-sqrt{5}}{2}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1-sqrt{5}}{2})^{2}+1^{2}}=1.2$
$hat{u}=frac{begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}}{1.2}$
$hat{u}=begin{bmatrix} -0.52\ 0.83 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} -0.52\0.83 end{bmatrix}$ and $x^{T}=begin{bmatrix} -0.52 &0.83 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} -0.52 &0.83 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} -0.52 \0.83 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}$
So,I got maximum value $x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5+sqrt{5}}{2} end{bmatrix}$
and minimum value $x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5-sqrt{5}}{2} end{bmatrix}$
add a comment |
up vote
0
down vote
up vote
0
down vote
Here $A=begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}$
For finding the eigen value:
Chracteristic equation:$|A-lambda I|=0$ where $I$ is called identity matrix.
$Rightarrow|A-lambda I|=begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-lambdabegin{vmatrix} 1&0 \ 0 & 1 end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-begin{vmatrix} lambda&0 \ 0 & lambda end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3-lambda &1 \ 1 & 2-lambda end{vmatrix}=0$
$Rightarrow(3-lambda)(2-lambda)-1=0$
$Rightarrow 6-3lambda-2lambda+lambda^{2}-1=0$
$Rightarrow lambda^{2}-5lambda+5=0$
Now$,lambda =frac{-(-5)pm sqrt{25-20}}{2}$
$lambda =frac{5pm sqrt{5}}{2}$
So$,lambda_{1} =frac{5+sqrt{5}}{2}$ and $lambda_{2} =frac{5-sqrt{5}}{2}$
Let Eigen vector $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}_{2times 1}$
Now find the Eigen Vectors:
$AX=lambda X$
$Rightarrow AX-lambda X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow(A-lambda I )X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow begin{bmatrix} 3-lambda &1 \ 1 & 2-lambda end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$------------$>(1)$
Put $lambda=frac{5+sqrt{5}}{2}$
$Rightarrow begin{bmatrix} 3-(frac{5+sqrt{5}}{2}) &1 \ 1 & 2-(frac{5+sqrt{5}}{2}) end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{6-5-sqrt{5}}{2} &1 \ 1 &frac{4-5-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-sqrt{5}}{2} &1 \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Perform some row operation
$R_{1}rightarrowfrac{1+sqrt{5}}{2}R_{1}$
$Rightarrow begin{bmatrix}(frac{1-sqrt{5}}{2}).(frac{1+sqrt{5}}{2})&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-5}{4}&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Again do some operation $R_{2}rightarrow R_{2}+R_{1}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 0 &0 end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Here $Rank (A)=1$ and $number$ $of$ $unknowns$ $ =2$
clearly see $r(A)<UK(1<2),$So $UK-r(A)=2-1=1$ value assign to the one unknowns.[This is case of infinite solutions]
So$,x_{2}=k$ and $-x_{1}+(frac{1+sqrt{5}}{2})x_{2}=0$
$ -x_{1}=-(frac{1+sqrt{5}}{2})k$
$ x_{1}=(frac{1+sqrt{5}}{2})k$
Therefor $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix}(frac{1+sqrt{5}}{2})k \k end{bmatrix}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1+sqrt{5}}{2})^{2}+1^{2}}=1.9$
$hat{u}=frac{begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}}{1.9}$
$hat{u}=begin{bmatrix} 0.85\ 0.52 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} 0.85 \0.52 end{bmatrix}$ and $x^{T}=begin{bmatrix} 0.85 &0.52 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} 0.85 &0.52 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} 0.85 \0.52 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}$
and similarly do for $lambda=frac{5-sqrt{5}}{2}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1-sqrt{5}}{2})^{2}+1^{2}}=1.2$
$hat{u}=frac{begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}}{1.2}$
$hat{u}=begin{bmatrix} -0.52\ 0.83 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} -0.52\0.83 end{bmatrix}$ and $x^{T}=begin{bmatrix} -0.52 &0.83 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} -0.52 &0.83 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} -0.52 \0.83 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}$
So,I got maximum value $x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5+sqrt{5}}{2} end{bmatrix}$
and minimum value $x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5-sqrt{5}}{2} end{bmatrix}$
Here $A=begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}$
For finding the eigen value:
Chracteristic equation:$|A-lambda I|=0$ where $I$ is called identity matrix.
$Rightarrow|A-lambda I|=begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-lambdabegin{vmatrix} 1&0 \ 0 & 1 end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3 &1 \ 1 & 2 end{vmatrix}-begin{vmatrix} lambda&0 \ 0 & lambda end{vmatrix}=0$
$Rightarrow begin{vmatrix} 3-lambda &1 \ 1 & 2-lambda end{vmatrix}=0$
$Rightarrow(3-lambda)(2-lambda)-1=0$
$Rightarrow 6-3lambda-2lambda+lambda^{2}-1=0$
$Rightarrow lambda^{2}-5lambda+5=0$
Now$,lambda =frac{-(-5)pm sqrt{25-20}}{2}$
$lambda =frac{5pm sqrt{5}}{2}$
So$,lambda_{1} =frac{5+sqrt{5}}{2}$ and $lambda_{2} =frac{5-sqrt{5}}{2}$
Let Eigen vector $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}_{2times 1}$
Now find the Eigen Vectors:
$AX=lambda X$
$Rightarrow AX-lambda X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow(A-lambda I )X=begin{bmatrix} 0 end{bmatrix}$
$Rightarrow begin{bmatrix} 3-lambda &1 \ 1 & 2-lambda end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$------------$>(1)$
Put $lambda=frac{5+sqrt{5}}{2}$
$Rightarrow begin{bmatrix} 3-(frac{5+sqrt{5}}{2}) &1 \ 1 & 2-(frac{5+sqrt{5}}{2}) end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{6-5-sqrt{5}}{2} &1 \ 1 &frac{4-5-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-sqrt{5}}{2} &1 \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Perform some row operation
$R_{1}rightarrowfrac{1+sqrt{5}}{2}R_{1}$
$Rightarrow begin{bmatrix}(frac{1-sqrt{5}}{2}).(frac{1+sqrt{5}}{2})&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}frac{1-5}{4}&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 1 &frac{-1-sqrt{5}}{2} end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Again do some operation $R_{2}rightarrow R_{2}+R_{1}$
$Rightarrow begin{bmatrix}-1&frac{1+sqrt{5}}{2} \ 0 &0 end{bmatrix}begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix} 0\0 end{bmatrix}$
Here $Rank (A)=1$ and $number$ $of$ $unknowns$ $ =2$
clearly see $r(A)<UK(1<2),$So $UK-r(A)=2-1=1$ value assign to the one unknowns.[This is case of infinite solutions]
So$,x_{2}=k$ and $-x_{1}+(frac{1+sqrt{5}}{2})x_{2}=0$
$ -x_{1}=-(frac{1+sqrt{5}}{2})k$
$ x_{1}=(frac{1+sqrt{5}}{2})k$
Therefor $X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=begin{bmatrix}(frac{1+sqrt{5}}{2})k \k end{bmatrix}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1+sqrt{5}}{2})^{2}+1^{2}}=1.9$
$hat{u}=frac{begin{bmatrix}(frac{1+sqrt{5}}{2}) \1 end{bmatrix}}{1.9}$
$hat{u}=begin{bmatrix} 0.85\ 0.52 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} 0.85 \0.52 end{bmatrix}$ and $x^{T}=begin{bmatrix} 0.85 &0.52 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} 0.85 &0.52 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} 0.85 \0.52 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}$
and similarly do for $lambda=frac{5-sqrt{5}}{2}$
$X=begin{bmatrix} x_{1}\x_{2} end{bmatrix}=k begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}$
Now, find the unit vectors of $A:$
$hat{u}=frac{vec{X}}{|vec{X}|}$
$|vec{X}|=sqrt{(frac{1-sqrt{5}}{2})^{2}+1^{2}}=1.2$
$hat{u}=frac{begin{bmatrix}(frac{1-sqrt{5}}{2}) \1 end{bmatrix}}{1.2}$
$hat{u}=begin{bmatrix} -0.52\ 0.83 end{bmatrix}$
here in given question $hat{u}=x=begin{bmatrix} -0.52\0.83 end{bmatrix}$ and $x^{T}=begin{bmatrix} -0.52 &0.83 end{bmatrix}$
Now $x^{T}Ax=begin{bmatrix} -0.52 &0.83 end{bmatrix}_{1times 2}times begin{bmatrix} 3 &1 \ 1 & 2 end{bmatrix}_{2times 2}times begin{bmatrix} -0.52 \0.83 end{bmatrix}_{2times 1}$
$x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}$
So,I got maximum value $x^{T}Ax=begin{bmatrix} 3.6 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5+sqrt{5}}{2} end{bmatrix}$
and minimum value $x^{T}Ax=begin{bmatrix} 1.33 end{bmatrix}_{1times 1}=begin{bmatrix} frac{5-sqrt{5}}{2} end{bmatrix}$
answered yesterday
Lakshman Patel
11
11
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1553046%2fwhat-is-the-maximum-value-of-xt-ax%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$x=(x_1,x_2)^T$ then $x^TAx=(x_1,x_2)A(x_1,x_2)^T$
– Kushal Bhuyan
Nov 30 '15 at 12:14