How to evaluate: $limlimits_{ntoinfty} frac{1^{p-1}+2^{p-1}+…+n^{p-1}}{n^p}$












5












$begingroup$


How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$



when



$i)$ $pinmathbb R,pneq0$



$ii)space p=0$



So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
    $endgroup$
    – mathcounterexamples.net
    Jan 25 at 10:33










  • $begingroup$
    Use math.stackexchange.com/questions/469885/…
    $endgroup$
    – lab bhattacharjee
    Jan 25 at 10:34










  • $begingroup$
    $$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:37






  • 1




    $begingroup$
    For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:40












  • $begingroup$
    For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
    $endgroup$
    – Martin Sleziak
    Feb 3 at 11:21
















5












$begingroup$


How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$



when



$i)$ $pinmathbb R,pneq0$



$ii)space p=0$



So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
    $endgroup$
    – mathcounterexamples.net
    Jan 25 at 10:33










  • $begingroup$
    Use math.stackexchange.com/questions/469885/…
    $endgroup$
    – lab bhattacharjee
    Jan 25 at 10:34










  • $begingroup$
    $$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:37






  • 1




    $begingroup$
    For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:40












  • $begingroup$
    For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
    $endgroup$
    – Martin Sleziak
    Feb 3 at 11:21














5












5








5


1



$begingroup$


How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$



when



$i)$ $pinmathbb R,pneq0$



$ii)space p=0$



So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.










share|cite|improve this question











$endgroup$




How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$



when



$i)$ $pinmathbb R,pneq0$



$ii)space p=0$



So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.







calculus limits analysis limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 3 at 11:14









Martin Sleziak

45k10123277




45k10123277










asked Jan 25 at 10:30









iggykimiiggykimi

31910




31910












  • $begingroup$
    I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
    $endgroup$
    – mathcounterexamples.net
    Jan 25 at 10:33










  • $begingroup$
    Use math.stackexchange.com/questions/469885/…
    $endgroup$
    – lab bhattacharjee
    Jan 25 at 10:34










  • $begingroup$
    $$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:37






  • 1




    $begingroup$
    For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:40












  • $begingroup$
    For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
    $endgroup$
    – Martin Sleziak
    Feb 3 at 11:21


















  • $begingroup$
    I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
    $endgroup$
    – mathcounterexamples.net
    Jan 25 at 10:33










  • $begingroup$
    Use math.stackexchange.com/questions/469885/…
    $endgroup$
    – lab bhattacharjee
    Jan 25 at 10:34










  • $begingroup$
    $$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:37






  • 1




    $begingroup$
    For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
    $endgroup$
    – Shubham Johri
    Jan 25 at 10:40












  • $begingroup$
    For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
    $endgroup$
    – Martin Sleziak
    Feb 3 at 11:21
















$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33




$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33












$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34




$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34












$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37




$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37




1




1




$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40






$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40














$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21




$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21










2 Answers
2






active

oldest

votes


















1












$begingroup$

We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
and consider other values of $p$ separately.



We consider for $pinmathbb{R}$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
end{align*}




Case $p>1, 0<p<1$:



If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
begin{align*}
a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
end{align*}

Since
begin{align*}
lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
&=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
&=frac{1}{p}
end{align*}

we have according to the theorem
begin{align*}
lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
end{align*}




Case $p=1$:



We obtain



begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
color{blue}{=1}
end{align*}




Case $p=0$:



We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
end{align*}

since the harmonic series is divergent.




Case $p<0$:



We set $q:=-p$ and obtain with $q>0$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
color{blue}{=infty}
end{align*}




We summarize:



begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
begin{cases}
frac{1}{p}&p>0\
infty&pleq 0
end{cases}
end{align*}







share|cite|improve this answer









$endgroup$





















    7












    $begingroup$

    Hint:



    Just write
    $$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
    and handle it as the limit of a Riemann sum.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Sorry but I haven't learnt about integration yet and I don't know how to do that :(
      $endgroup$
      – iggykimi
      Jan 25 at 18:10












    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086947%2fhow-to-evaluate-lim-limits-n-to-infty-frac1p-12p-1-np-1n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
    and consider other values of $p$ separately.



    We consider for $pinmathbb{R}$:
    begin{align*}
    lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
    end{align*}




    Case $p>1, 0<p<1$:



    If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
    begin{align*}
    a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
    b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
    end{align*}

    Since
    begin{align*}
    lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
    &=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
    &=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
    &=frac{1}{p}
    end{align*}

    we have according to the theorem
    begin{align*}
    lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
    end{align*}




    Case $p=1$:



    We obtain



    begin{align*}
    lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
    =lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
    color{blue}{=1}
    end{align*}




    Case $p=0$:



    We obtain
    begin{align*}
    lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
    =lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
    end{align*}

    since the harmonic series is divergent.




    Case $p<0$:



    We set $q:=-p$ and obtain with $q>0$:
    begin{align*}
    lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
    =lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
    color{blue}{=infty}
    end{align*}




    We summarize:



    begin{align*}
    lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
    begin{cases}
    frac{1}{p}&p>0\
    infty&pleq 0
    end{cases}
    end{align*}







    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
      and consider other values of $p$ separately.



      We consider for $pinmathbb{R}$:
      begin{align*}
      lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
      end{align*}




      Case $p>1, 0<p<1$:



      If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
      begin{align*}
      a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
      b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
      end{align*}

      Since
      begin{align*}
      lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
      &=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
      &=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
      &=frac{1}{p}
      end{align*}

      we have according to the theorem
      begin{align*}
      lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
      end{align*}




      Case $p=1$:



      We obtain



      begin{align*}
      lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
      =lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
      color{blue}{=1}
      end{align*}




      Case $p=0$:



      We obtain
      begin{align*}
      lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
      =lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
      end{align*}

      since the harmonic series is divergent.




      Case $p<0$:



      We set $q:=-p$ and obtain with $q>0$:
      begin{align*}
      lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
      =lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
      color{blue}{=infty}
      end{align*}




      We summarize:



      begin{align*}
      lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
      begin{cases}
      frac{1}{p}&p>0\
      infty&pleq 0
      end{cases}
      end{align*}







      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
        and consider other values of $p$ separately.



        We consider for $pinmathbb{R}$:
        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
        end{align*}




        Case $p>1, 0<p<1$:



        If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
        begin{align*}
        a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
        b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
        end{align*}

        Since
        begin{align*}
        lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
        &=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
        &=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
        &=frac{1}{p}
        end{align*}

        we have according to the theorem
        begin{align*}
        lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
        end{align*}




        Case $p=1$:



        We obtain



        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
        =lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
        color{blue}{=1}
        end{align*}




        Case $p=0$:



        We obtain
        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
        =lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
        end{align*}

        since the harmonic series is divergent.




        Case $p<0$:



        We set $q:=-p$ and obtain with $q>0$:
        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
        =lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
        color{blue}{=infty}
        end{align*}




        We summarize:



        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
        begin{cases}
        frac{1}{p}&p>0\
        infty&pleq 0
        end{cases}
        end{align*}







        share|cite|improve this answer









        $endgroup$



        We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
        and consider other values of $p$ separately.



        We consider for $pinmathbb{R}$:
        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
        end{align*}




        Case $p>1, 0<p<1$:



        If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
        begin{align*}
        a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
        b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
        end{align*}

        Since
        begin{align*}
        lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
        &=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
        &=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
        &=frac{1}{p}
        end{align*}

        we have according to the theorem
        begin{align*}
        lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
        end{align*}




        Case $p=1$:



        We obtain



        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
        =lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
        color{blue}{=1}
        end{align*}




        Case $p=0$:



        We obtain
        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
        =lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
        end{align*}

        since the harmonic series is divergent.




        Case $p<0$:



        We set $q:=-p$ and obtain with $q>0$:
        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
        =lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
        color{blue}{=infty}
        end{align*}




        We summarize:



        begin{align*}
        lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
        begin{cases}
        frac{1}{p}&p>0\
        infty&pleq 0
        end{cases}
        end{align*}








        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 26 at 12:02









        Markus ScheuerMarkus Scheuer

        64.5k460152




        64.5k460152























            7












            $begingroup$

            Hint:



            Just write
            $$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
            and handle it as the limit of a Riemann sum.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Sorry but I haven't learnt about integration yet and I don't know how to do that :(
              $endgroup$
              – iggykimi
              Jan 25 at 18:10
















            7












            $begingroup$

            Hint:



            Just write
            $$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
            and handle it as the limit of a Riemann sum.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Sorry but I haven't learnt about integration yet and I don't know how to do that :(
              $endgroup$
              – iggykimi
              Jan 25 at 18:10














            7












            7








            7





            $begingroup$

            Hint:



            Just write
            $$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
            and handle it as the limit of a Riemann sum.






            share|cite|improve this answer









            $endgroup$



            Hint:



            Just write
            $$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
            and handle it as the limit of a Riemann sum.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 25 at 10:39









            trancelocationtrancelocation

            14.2k1829




            14.2k1829












            • $begingroup$
              Sorry but I haven't learnt about integration yet and I don't know how to do that :(
              $endgroup$
              – iggykimi
              Jan 25 at 18:10


















            • $begingroup$
              Sorry but I haven't learnt about integration yet and I don't know how to do that :(
              $endgroup$
              – iggykimi
              Jan 25 at 18:10
















            $begingroup$
            Sorry but I haven't learnt about integration yet and I don't know how to do that :(
            $endgroup$
            – iggykimi
            Jan 25 at 18:10




            $begingroup$
            Sorry but I haven't learnt about integration yet and I don't know how to do that :(
            $endgroup$
            – iggykimi
            Jan 25 at 18:10


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086947%2fhow-to-evaluate-lim-limits-n-to-infty-frac1p-12p-1-np-1n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            Npm cannot find a required file even through it is in the searched directory