How to evaluate: $limlimits_{ntoinfty} frac{1^{p-1}+2^{p-1}+…+n^{p-1}}{n^p}$
$begingroup$
How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$
when
$i)$ $pinmathbb R,pneq0$
$ii)space p=0$
So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.
calculus limits analysis limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$
when
$i)$ $pinmathbb R,pneq0$
$ii)space p=0$
So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.
calculus limits analysis limits-without-lhopital
$endgroup$
$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34
$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37
1
$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40
$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21
add a comment |
$begingroup$
How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$
when
$i)$ $pinmathbb R,pneq0$
$ii)space p=0$
So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.
calculus limits analysis limits-without-lhopital
$endgroup$
How to evaluate: $$lim_{ntoinfty} dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}$$
when
$i)$ $pinmathbb R,pneq0$
$ii)space p=0$
So for $i)$ I tried using Stolz–Cesàro theorem and Binomial theorem and If I didn't mess up I got $1$. But I'm unsure about it, but for $ii)$ and I don't have a clue where to begin with.
calculus limits analysis limits-without-lhopital
calculus limits analysis limits-without-lhopital
edited Feb 3 at 11:14


Martin Sleziak
45k10123277
45k10123277
asked Jan 25 at 10:30


iggykimiiggykimi
31910
31910
$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34
$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37
1
$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40
$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21
add a comment |
$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34
$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37
1
$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40
$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21
$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33
$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34
$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37
$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37
1
1
$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40
$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40
$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21
$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
and consider other values of $p$ separately.
We consider for $pinmathbb{R}$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
end{align*}
Case $p>1, 0<p<1$:
If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
begin{align*}
a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
end{align*}
Since
begin{align*}
lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
&=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
&=frac{1}{p}
end{align*}
we have according to the theorem
begin{align*}
lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
end{align*}
Case $p=1$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
color{blue}{=1}
end{align*}
Case $p=0$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
end{align*}
since the harmonic series is divergent.
Case $p<0$:
We set $q:=-p$ and obtain with $q>0$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
color{blue}{=infty}
end{align*}
We summarize:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
begin{cases}
frac{1}{p}&p>0\
infty&pleq 0
end{cases}
end{align*}
$endgroup$
add a comment |
$begingroup$
Hint:
Just write
$$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
and handle it as the limit of a Riemann sum.
$endgroup$
$begingroup$
Sorry but I haven't learnt about integration yet and I don't know how to do that :(
$endgroup$
– iggykimi
Jan 25 at 18:10
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086947%2fhow-to-evaluate-lim-limits-n-to-infty-frac1p-12p-1-np-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
and consider other values of $p$ separately.
We consider for $pinmathbb{R}$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
end{align*}
Case $p>1, 0<p<1$:
If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
begin{align*}
a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
end{align*}
Since
begin{align*}
lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
&=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
&=frac{1}{p}
end{align*}
we have according to the theorem
begin{align*}
lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
end{align*}
Case $p=1$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
color{blue}{=1}
end{align*}
Case $p=0$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
end{align*}
since the harmonic series is divergent.
Case $p<0$:
We set $q:=-p$ and obtain with $q>0$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
color{blue}{=infty}
end{align*}
We summarize:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
begin{cases}
frac{1}{p}&p>0\
infty&pleq 0
end{cases}
end{align*}
$endgroup$
add a comment |
$begingroup$
We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
and consider other values of $p$ separately.
We consider for $pinmathbb{R}$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
end{align*}
Case $p>1, 0<p<1$:
If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
begin{align*}
a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
end{align*}
Since
begin{align*}
lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
&=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
&=frac{1}{p}
end{align*}
we have according to the theorem
begin{align*}
lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
end{align*}
Case $p=1$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
color{blue}{=1}
end{align*}
Case $p=0$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
end{align*}
since the harmonic series is divergent.
Case $p<0$:
We set $q:=-p$ and obtain with $q>0$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
color{blue}{=infty}
end{align*}
We summarize:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
begin{cases}
frac{1}{p}&p>0\
infty&pleq 0
end{cases}
end{align*}
$endgroup$
add a comment |
$begingroup$
We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
and consider other values of $p$ separately.
We consider for $pinmathbb{R}$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
end{align*}
Case $p>1, 0<p<1$:
If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
begin{align*}
a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
end{align*}
Since
begin{align*}
lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
&=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
&=frac{1}{p}
end{align*}
we have according to the theorem
begin{align*}
lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
end{align*}
Case $p=1$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
color{blue}{=1}
end{align*}
Case $p=0$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
end{align*}
since the harmonic series is divergent.
Case $p<0$:
We set $q:=-p$ and obtain with $q>0$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
color{blue}{=infty}
end{align*}
We summarize:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
begin{cases}
frac{1}{p}&p>0\
infty&pleq 0
end{cases}
end{align*}
$endgroup$
We can apply the Stolz-Cesàro theorem for positive real values $p, pne 1$
and consider other values of $p$ separately.
We consider for $pinmathbb{R}$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}tag{1}
end{align*}
Case $p>1, 0<p<1$:
If $p>1$ resp. $0<p<1$ the sequence $(n^p)_{ngeq 1}$ is strictly monotone increasing and unbounded. We can apply the Stolz-Cesàro theorem by letting
begin{align*}
a_n&=1^{p-1}+2^{p-1}+cdots+n^{p-1}\
b_n&=n^p=underbrace{n^{p-1}+n^{p-1}+cdots+n^{p-1}}_{n mathrm{ times}}
end{align*}
Since
begin{align*}
lim_{nto infty}frac{a_n-a_{n-1}}{b_n-b_{n-1}}&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n-1)^{p}}\
&=lim_{ntoinfty}frac{n^{p-1}}{n^p-(n^p-pn^{p-1}+binom{p}{2}n^{p-2}-cdots)}\
&=lim_{ntoinfty}frac{n^{p-1}}{pn^{p-1}-binom{p}{2}n^{p-2}+cdots}\
&=frac{1}{p}
end{align*}
we have according to the theorem
begin{align*}
lim_{nto infty}frac{a_n}{b_n}&=lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}color{blue}{=frac{1}{p}}
end{align*}
Case $p=1$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}frac{overbrace{1+1+cdots+1}^{nmathrm{ times}}}{n}=lim_{ntoinfty}frac{n}{n}
color{blue}{=1}
end{align*}
Case $p=0$:
We obtain
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{ntoinfty}left(1+frac{1}{2}+cdots+frac{1}{n}right)=sum_{n=1}^infty frac{1}{n}color{blue}{=infty}
end{align*}
since the harmonic series is divergent.
Case $p<0$:
We set $q:=-p$ and obtain with $q>0$:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}
=lim_{nto infty}n^qleft(1+frac{1}{2^{q+1}}+cdots+frac{1}{n^{q+1}}right)geq lim_{ntoinfty} n^q
color{blue}{=infty}
end{align*}
We summarize:
begin{align*}
lim_{nto infty}frac{1^{p-1}+2^{p-1}+cdots+n^{p-1}}{n^p}=
begin{cases}
frac{1}{p}&p>0\
infty&pleq 0
end{cases}
end{align*}
answered Jan 26 at 12:02


Markus ScheuerMarkus Scheuer
64.5k460152
64.5k460152
add a comment |
add a comment |
$begingroup$
Hint:
Just write
$$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
and handle it as the limit of a Riemann sum.
$endgroup$
$begingroup$
Sorry but I haven't learnt about integration yet and I don't know how to do that :(
$endgroup$
– iggykimi
Jan 25 at 18:10
add a comment |
$begingroup$
Hint:
Just write
$$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
and handle it as the limit of a Riemann sum.
$endgroup$
$begingroup$
Sorry but I haven't learnt about integration yet and I don't know how to do that :(
$endgroup$
– iggykimi
Jan 25 at 18:10
add a comment |
$begingroup$
Hint:
Just write
$$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
and handle it as the limit of a Riemann sum.
$endgroup$
Hint:
Just write
$$dfrac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p} = frac{1}{n}sum_{k=1}^nleft(frac{k}{n}right)^{p-1}$$
and handle it as the limit of a Riemann sum.
answered Jan 25 at 10:39
trancelocationtrancelocation
14.2k1829
14.2k1829
$begingroup$
Sorry but I haven't learnt about integration yet and I don't know how to do that :(
$endgroup$
– iggykimi
Jan 25 at 18:10
add a comment |
$begingroup$
Sorry but I haven't learnt about integration yet and I don't know how to do that :(
$endgroup$
– iggykimi
Jan 25 at 18:10
$begingroup$
Sorry but I haven't learnt about integration yet and I don't know how to do that :(
$endgroup$
– iggykimi
Jan 25 at 18:10
$begingroup$
Sorry but I haven't learnt about integration yet and I don't know how to do that :(
$endgroup$
– iggykimi
Jan 25 at 18:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086947%2fhow-to-evaluate-lim-limits-n-to-infty-frac1p-12p-1-np-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I would use series / integral comparison to bound below and above $1^{p-1}+2^{p-1}+…+n^{p-1}$.
$endgroup$
– mathcounterexamples.net
Jan 25 at 10:33
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 25 at 10:34
$begingroup$
$$lim_{ntoinfty}frac{1^{p-1}+2^{p-1}+...+n^{p-1}}{n^p}=lim_{ntoinfty}sum_{j=1}^nleft(frac jnright)^{p-1}frac1n=int_0^1x^{p-1}dx=begin{cases}frac1p,&pne0\infty,&p=0end{cases}$$
$endgroup$
– Shubham Johri
Jan 25 at 10:37
1
$begingroup$
For $p=0$, the limit is the sum of the Harmonic series ${frac1n}$. Proofs of its divergence are quite popular; see here
$endgroup$
– Shubham Johri
Jan 25 at 10:40
$begingroup$
For $p>0$ you can have a look at Evaluate $limlimits_{ntoinfty}frac{sum_{k=1}^n k^m}{n^{m+1}}$ (and the questions linked there) or What is the result of $ lim_{n to infty} frac{ sum^n_{i=1} i^k}{n^{k+1}}, k in mathbb{R} $ and why? (and the questions linked there).
$endgroup$
– Martin Sleziak
Feb 3 at 11:21