Vertical sliced cylinder












11















I want to explain how the shape of a cylinder is made. Therefore I want te make this picture.
enter image description here



My code is this:



documentclass{article}

usepackage{siunitx}
usepackage{tkz-euclide}

begin{document}

begin{center}
begin{tikzpicture}
tkzInit[xmin=0,xmax=7,ymax=8]
tkzClip
%tkzGrid
tkzDefPoints{3.5/1/A, 3.5/5/B} ;
draw[thick] (A) ellipse (1.5 and 0.5);
draw[thick] (B) ellipse (1.5 and 0.5);
draw[thick] (2,1) -- (2,5);
draw[thick] (5,1) -- (5,5);
draw[dashed,white,thick] (2,1) arc (180:360:1.5 and -0.5);
tkzLabelSegment[below,sloped,yshift=2.2cm](A,B){h=SI{6}{cm}};
end{tikzpicture}
end{center}

end{document}


Resulting in:



enter image description here



But I have a feeling that it is not a good start.



Any suggestions?










share|improve this question





























    11















    I want to explain how the shape of a cylinder is made. Therefore I want te make this picture.
    enter image description here



    My code is this:



    documentclass{article}

    usepackage{siunitx}
    usepackage{tkz-euclide}

    begin{document}

    begin{center}
    begin{tikzpicture}
    tkzInit[xmin=0,xmax=7,ymax=8]
    tkzClip
    %tkzGrid
    tkzDefPoints{3.5/1/A, 3.5/5/B} ;
    draw[thick] (A) ellipse (1.5 and 0.5);
    draw[thick] (B) ellipse (1.5 and 0.5);
    draw[thick] (2,1) -- (2,5);
    draw[thick] (5,1) -- (5,5);
    draw[dashed,white,thick] (2,1) arc (180:360:1.5 and -0.5);
    tkzLabelSegment[below,sloped,yshift=2.2cm](A,B){h=SI{6}{cm}};
    end{tikzpicture}
    end{center}

    end{document}


    Resulting in:



    enter image description here



    But I have a feeling that it is not a good start.



    Any suggestions?










    share|improve this question



























      11












      11








      11


      2






      I want to explain how the shape of a cylinder is made. Therefore I want te make this picture.
      enter image description here



      My code is this:



      documentclass{article}

      usepackage{siunitx}
      usepackage{tkz-euclide}

      begin{document}

      begin{center}
      begin{tikzpicture}
      tkzInit[xmin=0,xmax=7,ymax=8]
      tkzClip
      %tkzGrid
      tkzDefPoints{3.5/1/A, 3.5/5/B} ;
      draw[thick] (A) ellipse (1.5 and 0.5);
      draw[thick] (B) ellipse (1.5 and 0.5);
      draw[thick] (2,1) -- (2,5);
      draw[thick] (5,1) -- (5,5);
      draw[dashed,white,thick] (2,1) arc (180:360:1.5 and -0.5);
      tkzLabelSegment[below,sloped,yshift=2.2cm](A,B){h=SI{6}{cm}};
      end{tikzpicture}
      end{center}

      end{document}


      Resulting in:



      enter image description here



      But I have a feeling that it is not a good start.



      Any suggestions?










      share|improve this question
















      I want to explain how the shape of a cylinder is made. Therefore I want te make this picture.
      enter image description here



      My code is this:



      documentclass{article}

      usepackage{siunitx}
      usepackage{tkz-euclide}

      begin{document}

      begin{center}
      begin{tikzpicture}
      tkzInit[xmin=0,xmax=7,ymax=8]
      tkzClip
      %tkzGrid
      tkzDefPoints{3.5/1/A, 3.5/5/B} ;
      draw[thick] (A) ellipse (1.5 and 0.5);
      draw[thick] (B) ellipse (1.5 and 0.5);
      draw[thick] (2,1) -- (2,5);
      draw[thick] (5,1) -- (5,5);
      draw[dashed,white,thick] (2,1) arc (180:360:1.5 and -0.5);
      tkzLabelSegment[below,sloped,yshift=2.2cm](A,B){h=SI{6}{cm}};
      end{tikzpicture}
      end{center}

      end{document}


      Resulting in:



      enter image description here



      But I have a feeling that it is not a good start.



      Any suggestions?







      tikz-pgf tikz-3dplot tkz-euclide






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Feb 3 at 12:08









      Milo

      6,83721951




      6,83721951










      asked Feb 3 at 9:48









      Arne TimpermanArne Timperman

      2,5181638




      2,5181638






















          2 Answers
          2






          active

          oldest

          votes


















          14














          Here is one way to do it which adapts the code you were already using to draw the cylinders (i.e. using ellipses). This method uses the intersections library to calculate the intersection point of a line drawn radially out from the centre of the ellipse to the edge of the ellipse.



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below,text opacity=1] {$r$} --(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:360:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          With some shading to give a 3D effect



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(Int2)--(B)--(A);

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          Just for fun, a cone and a ball shape:



          enter image description here



          Cone



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(B);

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          draw [left color=black!70,right color=white] (A)--(Int1)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(B)--(A);

          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}


          enter image description here



          Ball



          Check out the answer by marmot for a more realistic ball!



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          pgfmathsetmacro{R}{1.5}

          coordinate (A) at (3.5,3);
          draw (A) circle (R);
          draw [fill=orange,fill opacity=0.5] (A)--++(-90:R) arc (270:90:R) -- cycle;

          coordinate (B) at (3.5,3+R);

          foreach X in {1.5 ,1.35 ,1.1 ,0.8 ,0.4 }{%
          draw [left color=black!70,right color=white] (B) arc (90:-90:X and 1.5) -- cycle;
          }
          draw [left color=black!30,right color=white] (B) arc (90:-90:0.4 and 1.5) -- cycle;

          draw [dashed] (2,3) arc (-180:0:1.5 and 0.3);
          draw [dashed] (2,3) arc (180:90:1.5 and 0.3);
          node (label) [inner sep=3pt] at (3.5-R/2,3) {$r$};
          draw (A)--(label.east) (label.west) --(2,3);

          end{tikzpicture}





          share|improve this answer





















          • 1





            +1:Looks very elegant (the code).

            – Dr. Manuel Kuehner
            Feb 3 at 12:47






          • 1





            Great! I'll try to understand your elegant code, so that I make it for a cone and a bol!

            – Arne Timperman
            Feb 3 at 14:46











          • @Milo I realized it for the cone... :D but 10^3 thanks for the code! And the ball (that I also needed!!!)

            – Arne Timperman
            Feb 3 at 17:13





















          5














          This is just for fun. I really like Milo's nice answer. The only minor issue I have is with the sphere. Either the dashed line is not the equator or the points at which the dividers intersect are not the poles. The following employs orthographic projections, and you can adjust the theta angle, i.e. the first argument of tdplotsetmaincoords{70}{0}, at will. (EDIT: added line join=bevel, thanks to minhthien_2016!)



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{3}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here



          And a version for minhthien_2016:



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          % https://tex.stackexchange.com/a/12033/121799
          tikzset{reverseclip/.style={insert path={(current bounding box.north
          east) rectangle (current bounding box.south west)}}}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{1}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          begin{scope}
          clip (-r,0,0) -- (0,0,h) -- (r,0,0) -- cycle;
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          begin{scope}
          clip (r,0,0) -- (0,0,h) -- (-r,0,0) -- (r,0,0) [reverseclip];
          draw plot[smooth,variable=t,domain=0:360] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw (-r,0,0) -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer


























          • Please note line of base of the cone. I view it with 300%, it is not good.

            – minhthien_2016
            Feb 4 at 6:31











          • @minhthien_2016 Thanks! I added line join=bevel. (You might be interested in this very nice addition by Henri Menke. It will be uploaded at a given time, and I plan to use it for for the 3d intersections that without your help never were created, let alone created correctly.)

            – marmot
            Feb 4 at 6:52











          • If I use your code in article class I had to ad usepackage{tkz-euclide} . If not I got errors. Do you have the same experience?

            – Arne Timperman
            Feb 4 at 9:51











          • @marmot Your comment about what? 3d intersections?

            – minhthien_2016
            Feb 4 at 12:51






          • 1





            @ArneTimperman No, one definitely does not have to add usepackage{tkz-euclide}. Note that tikz in documentclass[tikz,border=3.14mm]{standalone} loads tikz. Did you load tikz?

            – marmot
            Feb 4 at 14:41












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "85"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f473151%2fvertical-sliced-cylinder%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          14














          Here is one way to do it which adapts the code you were already using to draw the cylinders (i.e. using ellipses). This method uses the intersections library to calculate the intersection point of a line drawn radially out from the centre of the ellipse to the edge of the ellipse.



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below,text opacity=1] {$r$} --(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:360:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          With some shading to give a 3D effect



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(Int2)--(B)--(A);

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          Just for fun, a cone and a ball shape:



          enter image description here



          Cone



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(B);

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          draw [left color=black!70,right color=white] (A)--(Int1)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(B)--(A);

          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}


          enter image description here



          Ball



          Check out the answer by marmot for a more realistic ball!



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          pgfmathsetmacro{R}{1.5}

          coordinate (A) at (3.5,3);
          draw (A) circle (R);
          draw [fill=orange,fill opacity=0.5] (A)--++(-90:R) arc (270:90:R) -- cycle;

          coordinate (B) at (3.5,3+R);

          foreach X in {1.5 ,1.35 ,1.1 ,0.8 ,0.4 }{%
          draw [left color=black!70,right color=white] (B) arc (90:-90:X and 1.5) -- cycle;
          }
          draw [left color=black!30,right color=white] (B) arc (90:-90:0.4 and 1.5) -- cycle;

          draw [dashed] (2,3) arc (-180:0:1.5 and 0.3);
          draw [dashed] (2,3) arc (180:90:1.5 and 0.3);
          node (label) [inner sep=3pt] at (3.5-R/2,3) {$r$};
          draw (A)--(label.east) (label.west) --(2,3);

          end{tikzpicture}





          share|improve this answer





















          • 1





            +1:Looks very elegant (the code).

            – Dr. Manuel Kuehner
            Feb 3 at 12:47






          • 1





            Great! I'll try to understand your elegant code, so that I make it for a cone and a bol!

            – Arne Timperman
            Feb 3 at 14:46











          • @Milo I realized it for the cone... :D but 10^3 thanks for the code! And the ball (that I also needed!!!)

            – Arne Timperman
            Feb 3 at 17:13


















          14














          Here is one way to do it which adapts the code you were already using to draw the cylinders (i.e. using ellipses). This method uses the intersections library to calculate the intersection point of a line drawn radially out from the centre of the ellipse to the edge of the ellipse.



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below,text opacity=1] {$r$} --(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:360:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          With some shading to give a 3D effect



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(Int2)--(B)--(A);

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          Just for fun, a cone and a ball shape:



          enter image description here



          Cone



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(B);

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          draw [left color=black!70,right color=white] (A)--(Int1)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(B)--(A);

          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}


          enter image description here



          Ball



          Check out the answer by marmot for a more realistic ball!



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          pgfmathsetmacro{R}{1.5}

          coordinate (A) at (3.5,3);
          draw (A) circle (R);
          draw [fill=orange,fill opacity=0.5] (A)--++(-90:R) arc (270:90:R) -- cycle;

          coordinate (B) at (3.5,3+R);

          foreach X in {1.5 ,1.35 ,1.1 ,0.8 ,0.4 }{%
          draw [left color=black!70,right color=white] (B) arc (90:-90:X and 1.5) -- cycle;
          }
          draw [left color=black!30,right color=white] (B) arc (90:-90:0.4 and 1.5) -- cycle;

          draw [dashed] (2,3) arc (-180:0:1.5 and 0.3);
          draw [dashed] (2,3) arc (180:90:1.5 and 0.3);
          node (label) [inner sep=3pt] at (3.5-R/2,3) {$r$};
          draw (A)--(label.east) (label.west) --(2,3);

          end{tikzpicture}





          share|improve this answer





















          • 1





            +1:Looks very elegant (the code).

            – Dr. Manuel Kuehner
            Feb 3 at 12:47






          • 1





            Great! I'll try to understand your elegant code, so that I make it for a cone and a bol!

            – Arne Timperman
            Feb 3 at 14:46











          • @Milo I realized it for the cone... :D but 10^3 thanks for the code! And the ball (that I also needed!!!)

            – Arne Timperman
            Feb 3 at 17:13
















          14












          14








          14







          Here is one way to do it which adapts the code you were already using to draw the cylinders (i.e. using ellipses). This method uses the intersections library to calculate the intersection point of a line drawn radially out from the centre of the ellipse to the edge of the ellipse.



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below,text opacity=1] {$r$} --(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:360:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          With some shading to give a 3D effect



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(Int2)--(B)--(A);

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          Just for fun, a cone and a ball shape:



          enter image description here



          Cone



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(B);

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          draw [left color=black!70,right color=white] (A)--(Int1)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(B)--(A);

          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}


          enter image description here



          Ball



          Check out the answer by marmot for a more realistic ball!



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          pgfmathsetmacro{R}{1.5}

          coordinate (A) at (3.5,3);
          draw (A) circle (R);
          draw [fill=orange,fill opacity=0.5] (A)--++(-90:R) arc (270:90:R) -- cycle;

          coordinate (B) at (3.5,3+R);

          foreach X in {1.5 ,1.35 ,1.1 ,0.8 ,0.4 }{%
          draw [left color=black!70,right color=white] (B) arc (90:-90:X and 1.5) -- cycle;
          }
          draw [left color=black!30,right color=white] (B) arc (90:-90:0.4 and 1.5) -- cycle;

          draw [dashed] (2,3) arc (-180:0:1.5 and 0.3);
          draw [dashed] (2,3) arc (180:90:1.5 and 0.3);
          node (label) [inner sep=3pt] at (3.5-R/2,3) {$r$};
          draw (A)--(label.east) (label.west) --(2,3);

          end{tikzpicture}





          share|improve this answer















          Here is one way to do it which adapts the code you were already using to draw the cylinders (i.e. using ellipses). This method uses the intersections library to calculate the intersection point of a line drawn radially out from the centre of the ellipse to the edge of the ellipse.



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below,text opacity=1] {$r$} --(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [fill=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:360:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          With some shading to give a 3D effect



          enter image description here



          documentclass[tikz,margin=0.5cm]{standalone}
          usetikzlibrary{intersections}

          begin{document}

          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          draw (2,1) -- (2,5);
          draw (5,1) -- (5,5);
          path [name path=arcBabove] (2,5) arc (180:360:1.5 and -0.5);
          path [name path=arcBbelow] (2,5) arc (180:0:1.5 and -0.5);
          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(2,5)--(B);

          foreach X in {40,20,10}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAabove and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBabove and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          path[name path=line2] (Int1) -- ++(90:10);
          path[name intersections={of=arcBbelow and line2,by={Int2}}] (Int1) -- (Int2);
          draw [left color=black!70,right color=white] (A)--(Int1)--(Int2)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(Int2)--(B)--(A);

          draw (2,5) arc (180:360:1.5 and -0.5);
          draw (2,5) arc (180:0:1.5 and -0.5);
          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}
          end{document}


          Just for fun, a cone and a ball shape:



          enter image description here



          Cone



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          coordinate (A) at (3.5,1);
          coordinate (B) at (3.5,5);

          path [name path=arcAabove] (2,1) arc (180:360:1.5 and -0.5);
          path [name path=arcAbelow] (2,1) arc (180:0:1.5 and -0.5);

          draw [fill=orange,fill opacity=0.5] (A)--(2,1) node [midway,below, text opacity=1] {$r$}--(B);

          foreach X in {0,-11,-22.5,-40,-65}{%
          path[name path=line1] (A) -- ++(X:3);
          path[name intersections={of=arcAbelow and line1,by={Int1}}] (A) -- (Int1);
          draw [left color=black!70,right color=white] (A)--(Int1)--(B)--(A);
          }
          draw [left color=black!20,right color=white] (A)--(Int1)--(B)--(A);

          draw [dashed] (2,1) arc (180:270:1.5 and -0.5);
          draw (2,1) arc (180:0:1.5 and -0.5);

          end{tikzpicture}


          enter image description here



          Ball



          Check out the answer by marmot for a more realistic ball!



          begin{tikzpicture}[thick,line join=bevel]

          useasboundingbox (1,0) rectangle (6,6);

          pgfmathsetmacro{R}{1.5}

          coordinate (A) at (3.5,3);
          draw (A) circle (R);
          draw [fill=orange,fill opacity=0.5] (A)--++(-90:R) arc (270:90:R) -- cycle;

          coordinate (B) at (3.5,3+R);

          foreach X in {1.5 ,1.35 ,1.1 ,0.8 ,0.4 }{%
          draw [left color=black!70,right color=white] (B) arc (90:-90:X and 1.5) -- cycle;
          }
          draw [left color=black!30,right color=white] (B) arc (90:-90:0.4 and 1.5) -- cycle;

          draw [dashed] (2,3) arc (-180:0:1.5 and 0.3);
          draw [dashed] (2,3) arc (180:90:1.5 and 0.3);
          node (label) [inner sep=3pt] at (3.5-R/2,3) {$r$};
          draw (A)--(label.east) (label.west) --(2,3);

          end{tikzpicture}






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Feb 3 at 22:17

























          answered Feb 3 at 11:56









          MiloMilo

          6,83721951




          6,83721951








          • 1





            +1:Looks very elegant (the code).

            – Dr. Manuel Kuehner
            Feb 3 at 12:47






          • 1





            Great! I'll try to understand your elegant code, so that I make it for a cone and a bol!

            – Arne Timperman
            Feb 3 at 14:46











          • @Milo I realized it for the cone... :D but 10^3 thanks for the code! And the ball (that I also needed!!!)

            – Arne Timperman
            Feb 3 at 17:13
















          • 1





            +1:Looks very elegant (the code).

            – Dr. Manuel Kuehner
            Feb 3 at 12:47






          • 1





            Great! I'll try to understand your elegant code, so that I make it for a cone and a bol!

            – Arne Timperman
            Feb 3 at 14:46











          • @Milo I realized it for the cone... :D but 10^3 thanks for the code! And the ball (that I also needed!!!)

            – Arne Timperman
            Feb 3 at 17:13










          1




          1





          +1:Looks very elegant (the code).

          – Dr. Manuel Kuehner
          Feb 3 at 12:47





          +1:Looks very elegant (the code).

          – Dr. Manuel Kuehner
          Feb 3 at 12:47




          1




          1





          Great! I'll try to understand your elegant code, so that I make it for a cone and a bol!

          – Arne Timperman
          Feb 3 at 14:46





          Great! I'll try to understand your elegant code, so that I make it for a cone and a bol!

          – Arne Timperman
          Feb 3 at 14:46













          @Milo I realized it for the cone... :D but 10^3 thanks for the code! And the ball (that I also needed!!!)

          – Arne Timperman
          Feb 3 at 17:13







          @Milo I realized it for the cone... :D but 10^3 thanks for the code! And the ball (that I also needed!!!)

          – Arne Timperman
          Feb 3 at 17:13













          5














          This is just for fun. I really like Milo's nice answer. The only minor issue I have is with the sphere. Either the dashed line is not the equator or the points at which the dividers intersect are not the poles. The following employs orthographic projections, and you can adjust the theta angle, i.e. the first argument of tdplotsetmaincoords{70}{0}, at will. (EDIT: added line join=bevel, thanks to minhthien_2016!)



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{3}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here



          And a version for minhthien_2016:



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          % https://tex.stackexchange.com/a/12033/121799
          tikzset{reverseclip/.style={insert path={(current bounding box.north
          east) rectangle (current bounding box.south west)}}}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{1}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          begin{scope}
          clip (-r,0,0) -- (0,0,h) -- (r,0,0) -- cycle;
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          begin{scope}
          clip (r,0,0) -- (0,0,h) -- (-r,0,0) -- (r,0,0) [reverseclip];
          draw plot[smooth,variable=t,domain=0:360] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw (-r,0,0) -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer


























          • Please note line of base of the cone. I view it with 300%, it is not good.

            – minhthien_2016
            Feb 4 at 6:31











          • @minhthien_2016 Thanks! I added line join=bevel. (You might be interested in this very nice addition by Henri Menke. It will be uploaded at a given time, and I plan to use it for for the 3d intersections that without your help never were created, let alone created correctly.)

            – marmot
            Feb 4 at 6:52











          • If I use your code in article class I had to ad usepackage{tkz-euclide} . If not I got errors. Do you have the same experience?

            – Arne Timperman
            Feb 4 at 9:51











          • @marmot Your comment about what? 3d intersections?

            – minhthien_2016
            Feb 4 at 12:51






          • 1





            @ArneTimperman No, one definitely does not have to add usepackage{tkz-euclide}. Note that tikz in documentclass[tikz,border=3.14mm]{standalone} loads tikz. Did you load tikz?

            – marmot
            Feb 4 at 14:41
















          5














          This is just for fun. I really like Milo's nice answer. The only minor issue I have is with the sphere. Either the dashed line is not the equator or the points at which the dividers intersect are not the poles. The following employs orthographic projections, and you can adjust the theta angle, i.e. the first argument of tdplotsetmaincoords{70}{0}, at will. (EDIT: added line join=bevel, thanks to minhthien_2016!)



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{3}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here



          And a version for minhthien_2016:



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          % https://tex.stackexchange.com/a/12033/121799
          tikzset{reverseclip/.style={insert path={(current bounding box.north
          east) rectangle (current bounding box.south west)}}}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{1}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          begin{scope}
          clip (-r,0,0) -- (0,0,h) -- (r,0,0) -- cycle;
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          begin{scope}
          clip (r,0,0) -- (0,0,h) -- (-r,0,0) -- (r,0,0) [reverseclip];
          draw plot[smooth,variable=t,domain=0:360] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw (-r,0,0) -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer


























          • Please note line of base of the cone. I view it with 300%, it is not good.

            – minhthien_2016
            Feb 4 at 6:31











          • @minhthien_2016 Thanks! I added line join=bevel. (You might be interested in this very nice addition by Henri Menke. It will be uploaded at a given time, and I plan to use it for for the 3d intersections that without your help never were created, let alone created correctly.)

            – marmot
            Feb 4 at 6:52











          • If I use your code in article class I had to ad usepackage{tkz-euclide} . If not I got errors. Do you have the same experience?

            – Arne Timperman
            Feb 4 at 9:51











          • @marmot Your comment about what? 3d intersections?

            – minhthien_2016
            Feb 4 at 12:51






          • 1





            @ArneTimperman No, one definitely does not have to add usepackage{tkz-euclide}. Note that tikz in documentclass[tikz,border=3.14mm]{standalone} loads tikz. Did you load tikz?

            – marmot
            Feb 4 at 14:41














          5












          5








          5







          This is just for fun. I really like Milo's nice answer. The only minor issue I have is with the sphere. Either the dashed line is not the equator or the points at which the dividers intersect are not the poles. The following employs orthographic projections, and you can adjust the theta angle, i.e. the first argument of tdplotsetmaincoords{70}{0}, at will. (EDIT: added line join=bevel, thanks to minhthien_2016!)



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{3}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here



          And a version for minhthien_2016:



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          % https://tex.stackexchange.com/a/12033/121799
          tikzset{reverseclip/.style={insert path={(current bounding box.north
          east) rectangle (current bounding box.south west)}}}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{1}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          begin{scope}
          clip (-r,0,0) -- (0,0,h) -- (r,0,0) -- cycle;
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          begin{scope}
          clip (r,0,0) -- (0,0,h) -- (-r,0,0) -- (r,0,0) [reverseclip];
          draw plot[smooth,variable=t,domain=0:360] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw (-r,0,0) -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer















          This is just for fun. I really like Milo's nice answer. The only minor issue I have is with the sphere. Either the dashed line is not the equator or the points at which the dividers intersect are not the poles. The following employs orthographic projections, and you can adjust the theta angle, i.e. the first argument of tdplotsetmaincoords{70}{0}, at will. (EDIT: added line join=bevel, thanks to minhthien_2016!)



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{3}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here



          And a version for minhthien_2016:



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          % https://tex.stackexchange.com/a/12033/121799
          tikzset{reverseclip/.style={insert path={(current bounding box.north
          east) rectangle (current bounding box.south west)}}}
          begin{document}
          tdplotsetmaincoords{70}{0}
          begin{tikzpicture}[tdplot_main_coords,font=sffamily,line join=bevel]
          pgfmathsetmacro{r}{1.5}
          pgfmathsetmacro{h}{1}
          begin{scope}[local bounding box=cylinder]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (-r,0,h) -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0) -- ({r*cos(Z)},{r*sin(Z)},0) --
          ({r*cos(Z)},{r*sin(Z)},h) -- (0,0,h) -- cycle;}
          draw plot[smooth,variable=t,domain=0:-180] ({r*cos(t)},{r*sin(t)},0)
          -- plot[smooth,variable=t,domain=-180:180] ({r*cos(t)},{r*sin(t)},h)
          (r,0,0) -- (r,0,h);
          end{scope}
          node[anchor=south] at (cylinder.north) {cylinder};
          %
          begin{scope}[local bounding box=cone,xshift={(2*r+1)*1cm}]
          begin{scope}
          clip (-r,0,0) -- (0,0,h) -- (r,0,0) -- cycle;
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw[fill=orange,fill opacity=0.5] (0,0) -- (-r,0,0)
          node[midway,below,opacity=1] {$r$} -- (0,0,h);
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5] (0,0,0)
          -- ({r*cos(Z)},{r*sin(Z)},0) -- (0,0,h) -- cycle;}
          begin{scope}
          clip (r,0,0) -- (0,0,h) -- (-r,0,0) -- (r,0,0) [reverseclip];
          draw plot[smooth,variable=t,domain=0:360] ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          draw (-r,0,0) -- (0,0,h) -- (r,0,0) ;
          end{scope}
          node[anchor=south] at (cone.north|-cylinder.north) {cone};
          %
          begin{scope}[local bounding box=ball,xshift={(2*r+1)*2cm},yshift={(h-r)*1cm}]
          draw[dashed] plot[smooth,variable=t,domain=0:180] ({r*cos(t)},{r*sin(t)},0);
          draw[fill=orange,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270] ({r*cos(t)},0,{r*sin(t)});
          foreach Z in {80,60,...,-80}
          {draw[left color=gray,right color=white,fill opacity=0.5]
          plot[smooth,variable=t,domain=90:270]
          ({-r*cos(t)*cos(-Z)},{r*cos(t)*sin(-Z)},{r*sin(t)});}
          draw[tdplot_screen_coords] (0,0) circle[radius=r];
          draw plot[smooth,variable=t,domain=0:-180]
          ({r*cos(t)},{r*sin(t)},0);
          end{scope}
          node[anchor=south] at (ball.north|-cylinder.north) {ball};
          %
          end{tikzpicture}
          end{document}


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Feb 5 at 15:18

























          answered Feb 3 at 19:07









          marmotmarmot

          118k6153288




          118k6153288













          • Please note line of base of the cone. I view it with 300%, it is not good.

            – minhthien_2016
            Feb 4 at 6:31











          • @minhthien_2016 Thanks! I added line join=bevel. (You might be interested in this very nice addition by Henri Menke. It will be uploaded at a given time, and I plan to use it for for the 3d intersections that without your help never were created, let alone created correctly.)

            – marmot
            Feb 4 at 6:52











          • If I use your code in article class I had to ad usepackage{tkz-euclide} . If not I got errors. Do you have the same experience?

            – Arne Timperman
            Feb 4 at 9:51











          • @marmot Your comment about what? 3d intersections?

            – minhthien_2016
            Feb 4 at 12:51






          • 1





            @ArneTimperman No, one definitely does not have to add usepackage{tkz-euclide}. Note that tikz in documentclass[tikz,border=3.14mm]{standalone} loads tikz. Did you load tikz?

            – marmot
            Feb 4 at 14:41



















          • Please note line of base of the cone. I view it with 300%, it is not good.

            – minhthien_2016
            Feb 4 at 6:31











          • @minhthien_2016 Thanks! I added line join=bevel. (You might be interested in this very nice addition by Henri Menke. It will be uploaded at a given time, and I plan to use it for for the 3d intersections that without your help never were created, let alone created correctly.)

            – marmot
            Feb 4 at 6:52











          • If I use your code in article class I had to ad usepackage{tkz-euclide} . If not I got errors. Do you have the same experience?

            – Arne Timperman
            Feb 4 at 9:51











          • @marmot Your comment about what? 3d intersections?

            – minhthien_2016
            Feb 4 at 12:51






          • 1





            @ArneTimperman No, one definitely does not have to add usepackage{tkz-euclide}. Note that tikz in documentclass[tikz,border=3.14mm]{standalone} loads tikz. Did you load tikz?

            – marmot
            Feb 4 at 14:41

















          Please note line of base of the cone. I view it with 300%, it is not good.

          – minhthien_2016
          Feb 4 at 6:31





          Please note line of base of the cone. I view it with 300%, it is not good.

          – minhthien_2016
          Feb 4 at 6:31













          @minhthien_2016 Thanks! I added line join=bevel. (You might be interested in this very nice addition by Henri Menke. It will be uploaded at a given time, and I plan to use it for for the 3d intersections that without your help never were created, let alone created correctly.)

          – marmot
          Feb 4 at 6:52





          @minhthien_2016 Thanks! I added line join=bevel. (You might be interested in this very nice addition by Henri Menke. It will be uploaded at a given time, and I plan to use it for for the 3d intersections that without your help never were created, let alone created correctly.)

          – marmot
          Feb 4 at 6:52













          If I use your code in article class I had to ad usepackage{tkz-euclide} . If not I got errors. Do you have the same experience?

          – Arne Timperman
          Feb 4 at 9:51





          If I use your code in article class I had to ad usepackage{tkz-euclide} . If not I got errors. Do you have the same experience?

          – Arne Timperman
          Feb 4 at 9:51













          @marmot Your comment about what? 3d intersections?

          – minhthien_2016
          Feb 4 at 12:51





          @marmot Your comment about what? 3d intersections?

          – minhthien_2016
          Feb 4 at 12:51




          1




          1





          @ArneTimperman No, one definitely does not have to add usepackage{tkz-euclide}. Note that tikz in documentclass[tikz,border=3.14mm]{standalone} loads tikz. Did you load tikz?

          – marmot
          Feb 4 at 14:41





          @ArneTimperman No, one definitely does not have to add usepackage{tkz-euclide}. Note that tikz in documentclass[tikz,border=3.14mm]{standalone} loads tikz. Did you load tikz?

          – marmot
          Feb 4 at 14:41


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f473151%2fvertical-sliced-cylinder%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]