Constructing a polynomial given the Galois Group of it's splitting field
up vote
4
down vote
favorite
Let $red_p : mathbb{Z}[x]tomathbb{Z}/(p)[x]$ be the canonical ring morphism sending a polynomial with integer coefficients to a polynomial with integer coefficients modulo $p$, with $p$ a prime, by taking modulo to each coefficient.
My objective is to find a polynomial $finmathbb{Z}[x]$ of degree $8$ such that $mathrm{Gal}(F/mathbb{Q})cong S_8$, where $F$ denotes the splitting field of $f$ over $mathbb{Q}$, and such that $red_7(f)$ is irreducible in $mathbb{Z}/(7)[x]$. I don't even know how to begin. Any help would be greatly appreciated.
I've made some attemps to construct an 8 degree polynomial such that $mathrm{Gal}(F/mathbb{Q})cong S_8$ but I can't seem to solve that problem either. I think that would be a great starting point.
polynomials ring-theory field-theory galois-theory automorphism-group
add a comment |
up vote
4
down vote
favorite
Let $red_p : mathbb{Z}[x]tomathbb{Z}/(p)[x]$ be the canonical ring morphism sending a polynomial with integer coefficients to a polynomial with integer coefficients modulo $p$, with $p$ a prime, by taking modulo to each coefficient.
My objective is to find a polynomial $finmathbb{Z}[x]$ of degree $8$ such that $mathrm{Gal}(F/mathbb{Q})cong S_8$, where $F$ denotes the splitting field of $f$ over $mathbb{Q}$, and such that $red_7(f)$ is irreducible in $mathbb{Z}/(7)[x]$. I don't even know how to begin. Any help would be greatly appreciated.
I've made some attemps to construct an 8 degree polynomial such that $mathrm{Gal}(F/mathbb{Q})cong S_8$ but I can't seem to solve that problem either. I think that would be a great starting point.
polynomials ring-theory field-theory galois-theory automorphism-group
Replace $S_8$ by $S_3$. Take $f in mathbb{Z}[x], deg(f) = 3$ with $f in mathbb{Z}/(p)[x] $ irreducible. Thus $f in mathbb{Z}[x]$ is irreducible and $R = mathbb{Z}[x]/(f(x))$ is an integral domain. Then let $g(y) = frac{f(y)}{y-x} in R[y]$ and assume $g(y) in R/(q)[y]$ is irreducible (note we can change $gbmod q$ without changing $f bmod p$), thus $g(y) in R[y]$ is irreducible and $R[y]/(g(y))$ is an integral domain. Whence $F = Frac(R[y]/(g(y)))$ is the splitting field of $f(x) in mathbb{Q}[x]$ and $[F:mathbb{Q}] = 6$ implies $Gal(F/mathbb{Q}) = S_3$.
– reuns
yesterday
2
Are you familiar with Dedekind's theorem on the relation between irreducible factors of $f$ mod primes and cycle types of the elements of $operatorname{Gal}(f)$? This would suggest to start with an irreducible polynomial in $Bbb{Z}/7Bbb{Z}[X]$ and lift it to $Bbb{Z}[X]$; this will give you a Galois group with a $7$-cycle. Then it does not take much to get all of $S_8$, e.g. a transposition will do.
– Servaes
yesterday
*In the above it should say $8$-cycle in stead of $7$-cycle.
– Servaes
yesterday
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Let $red_p : mathbb{Z}[x]tomathbb{Z}/(p)[x]$ be the canonical ring morphism sending a polynomial with integer coefficients to a polynomial with integer coefficients modulo $p$, with $p$ a prime, by taking modulo to each coefficient.
My objective is to find a polynomial $finmathbb{Z}[x]$ of degree $8$ such that $mathrm{Gal}(F/mathbb{Q})cong S_8$, where $F$ denotes the splitting field of $f$ over $mathbb{Q}$, and such that $red_7(f)$ is irreducible in $mathbb{Z}/(7)[x]$. I don't even know how to begin. Any help would be greatly appreciated.
I've made some attemps to construct an 8 degree polynomial such that $mathrm{Gal}(F/mathbb{Q})cong S_8$ but I can't seem to solve that problem either. I think that would be a great starting point.
polynomials ring-theory field-theory galois-theory automorphism-group
Let $red_p : mathbb{Z}[x]tomathbb{Z}/(p)[x]$ be the canonical ring morphism sending a polynomial with integer coefficients to a polynomial with integer coefficients modulo $p$, with $p$ a prime, by taking modulo to each coefficient.
My objective is to find a polynomial $finmathbb{Z}[x]$ of degree $8$ such that $mathrm{Gal}(F/mathbb{Q})cong S_8$, where $F$ denotes the splitting field of $f$ over $mathbb{Q}$, and such that $red_7(f)$ is irreducible in $mathbb{Z}/(7)[x]$. I don't even know how to begin. Any help would be greatly appreciated.
I've made some attemps to construct an 8 degree polynomial such that $mathrm{Gal}(F/mathbb{Q})cong S_8$ but I can't seem to solve that problem either. I think that would be a great starting point.
polynomials ring-theory field-theory galois-theory automorphism-group
polynomials ring-theory field-theory galois-theory automorphism-group
asked yesterday
Ray Bern
1109
1109
Replace $S_8$ by $S_3$. Take $f in mathbb{Z}[x], deg(f) = 3$ with $f in mathbb{Z}/(p)[x] $ irreducible. Thus $f in mathbb{Z}[x]$ is irreducible and $R = mathbb{Z}[x]/(f(x))$ is an integral domain. Then let $g(y) = frac{f(y)}{y-x} in R[y]$ and assume $g(y) in R/(q)[y]$ is irreducible (note we can change $gbmod q$ without changing $f bmod p$), thus $g(y) in R[y]$ is irreducible and $R[y]/(g(y))$ is an integral domain. Whence $F = Frac(R[y]/(g(y)))$ is the splitting field of $f(x) in mathbb{Q}[x]$ and $[F:mathbb{Q}] = 6$ implies $Gal(F/mathbb{Q}) = S_3$.
– reuns
yesterday
2
Are you familiar with Dedekind's theorem on the relation between irreducible factors of $f$ mod primes and cycle types of the elements of $operatorname{Gal}(f)$? This would suggest to start with an irreducible polynomial in $Bbb{Z}/7Bbb{Z}[X]$ and lift it to $Bbb{Z}[X]$; this will give you a Galois group with a $7$-cycle. Then it does not take much to get all of $S_8$, e.g. a transposition will do.
– Servaes
yesterday
*In the above it should say $8$-cycle in stead of $7$-cycle.
– Servaes
yesterday
add a comment |
Replace $S_8$ by $S_3$. Take $f in mathbb{Z}[x], deg(f) = 3$ with $f in mathbb{Z}/(p)[x] $ irreducible. Thus $f in mathbb{Z}[x]$ is irreducible and $R = mathbb{Z}[x]/(f(x))$ is an integral domain. Then let $g(y) = frac{f(y)}{y-x} in R[y]$ and assume $g(y) in R/(q)[y]$ is irreducible (note we can change $gbmod q$ without changing $f bmod p$), thus $g(y) in R[y]$ is irreducible and $R[y]/(g(y))$ is an integral domain. Whence $F = Frac(R[y]/(g(y)))$ is the splitting field of $f(x) in mathbb{Q}[x]$ and $[F:mathbb{Q}] = 6$ implies $Gal(F/mathbb{Q}) = S_3$.
– reuns
yesterday
2
Are you familiar with Dedekind's theorem on the relation between irreducible factors of $f$ mod primes and cycle types of the elements of $operatorname{Gal}(f)$? This would suggest to start with an irreducible polynomial in $Bbb{Z}/7Bbb{Z}[X]$ and lift it to $Bbb{Z}[X]$; this will give you a Galois group with a $7$-cycle. Then it does not take much to get all of $S_8$, e.g. a transposition will do.
– Servaes
yesterday
*In the above it should say $8$-cycle in stead of $7$-cycle.
– Servaes
yesterday
Replace $S_8$ by $S_3$. Take $f in mathbb{Z}[x], deg(f) = 3$ with $f in mathbb{Z}/(p)[x] $ irreducible. Thus $f in mathbb{Z}[x]$ is irreducible and $R = mathbb{Z}[x]/(f(x))$ is an integral domain. Then let $g(y) = frac{f(y)}{y-x} in R[y]$ and assume $g(y) in R/(q)[y]$ is irreducible (note we can change $gbmod q$ without changing $f bmod p$), thus $g(y) in R[y]$ is irreducible and $R[y]/(g(y))$ is an integral domain. Whence $F = Frac(R[y]/(g(y)))$ is the splitting field of $f(x) in mathbb{Q}[x]$ and $[F:mathbb{Q}] = 6$ implies $Gal(F/mathbb{Q}) = S_3$.
– reuns
yesterday
Replace $S_8$ by $S_3$. Take $f in mathbb{Z}[x], deg(f) = 3$ with $f in mathbb{Z}/(p)[x] $ irreducible. Thus $f in mathbb{Z}[x]$ is irreducible and $R = mathbb{Z}[x]/(f(x))$ is an integral domain. Then let $g(y) = frac{f(y)}{y-x} in R[y]$ and assume $g(y) in R/(q)[y]$ is irreducible (note we can change $gbmod q$ without changing $f bmod p$), thus $g(y) in R[y]$ is irreducible and $R[y]/(g(y))$ is an integral domain. Whence $F = Frac(R[y]/(g(y)))$ is the splitting field of $f(x) in mathbb{Q}[x]$ and $[F:mathbb{Q}] = 6$ implies $Gal(F/mathbb{Q}) = S_3$.
– reuns
yesterday
2
2
Are you familiar with Dedekind's theorem on the relation between irreducible factors of $f$ mod primes and cycle types of the elements of $operatorname{Gal}(f)$? This would suggest to start with an irreducible polynomial in $Bbb{Z}/7Bbb{Z}[X]$ and lift it to $Bbb{Z}[X]$; this will give you a Galois group with a $7$-cycle. Then it does not take much to get all of $S_8$, e.g. a transposition will do.
– Servaes
yesterday
Are you familiar with Dedekind's theorem on the relation between irreducible factors of $f$ mod primes and cycle types of the elements of $operatorname{Gal}(f)$? This would suggest to start with an irreducible polynomial in $Bbb{Z}/7Bbb{Z}[X]$ and lift it to $Bbb{Z}[X]$; this will give you a Galois group with a $7$-cycle. Then it does not take much to get all of $S_8$, e.g. a transposition will do.
– Servaes
yesterday
*In the above it should say $8$-cycle in stead of $7$-cycle.
– Servaes
yesterday
*In the above it should say $8$-cycle in stead of $7$-cycle.
– Servaes
yesterday
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
This is not a complete answer, just a start as you indicate that you don't even know where to begin.
Let $finBbb{Z}[x]$ monic. If its image $f_p$ in $Bbb{F}_p[x]$ is separable and factors as $f_p=prod_{i=1}^kg_k$, then $operatorname{Gal}(f)$ contains an element of cycle type $(deg g_1,ldots,deg g_k)$. So it makes sense to start from an irreducibe polynomial $hinBbb{F}_7[x]$ as then any lift $tilde{h}inBbb{Z}[x]$ already has an element of order $8$ in $operatorname{Gal}(tilde{h})$. An easy first candidate is
$$h_7=x^8+x+3inBbb{F}_7[x].$$
To make sure we also have a transpotion in $operatorname{Gal}(f)$, we choose a lift $tilde{h}inBbb{Z}[x]$ that factors into one quadratic and six linear factors mod $2$. A bit of fiddling around yields, for example
$$tilde{h}=x^8+x+3+7(x^7+x^6+x+1)inBbb{Z}[x],$$
so that
$$h_2=x^8+x^7+x^6=x^6(x^2+x+1)inBbb{F}_2[x].$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition. This doesn't quite give you that $operatorname{Gal}(tilde{h})cong S_8$, but gets you on the right track.
EDIT: As pointed out in the comments below $h_2$ is not separable, so this choice of $tilde{h}$ doesn't quite work. I have no doubt the argument can be salvaged, but the result will likely not be as pretty. I'll give it some thought tomorrow.
UPDATE: One way to salvage the argument is to take a larger prime $p$, so that a lift $tilde{h}$ splits into six distinct linear factors and one irreducible quadratic factor. As $degtilde{h}=8$ this requires $pgeq6$, hence $p=11$ is the smallest prime that might work. And indeed, surprisingly little fiddling around shows that the lift
$$tilde{h}=x^8+x+3+7(x+8)big((x+3)(x+4)+6(x+1)(x+2)(x+5)(x+10)big)inBbb{Z}[x],$$
satisfies
$$h_p=(x+1)(x+2)(x+3)(x+5)(x+8)(x+10)(x^2+4x+5)inBbb{F}_p[x],$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition.
How did you find $h_7$?
– Ray Bern
yesterday
An educated guess; there is quite often a $cinBbb{F}_p$ such that $x^n+x+c$ is irreducible.
– Servaes
yesterday
A good technique. But I'm afraid I need to complain about $h_2(x)$ not being separable in $Bbb{F}_2[x]$.
– Jyrki Lahtonen
yesterday
@Jyrki You're absolutely right. It seems the argument needs a bigger prime, the computations will likely not be so clean. I'll give it some thought tomorrow.
– Servaes
yesterday
Many ways to use this idea I think. One way is to specify the factors modulo any finite collection of primes, then do a Chinese remainder theorem combination of the products. And only then lift from $Bbb{Z}_{p_1p_2cdots p_k}$ to $Bbb{Z}$. As you pointed out the end result may not look nice :-)
– Jyrki Lahtonen
yesterday
add a comment |
up vote
0
down vote
This example was produced in the first place by randomly generating polynomials and checking the factorizations with computer help (it only took a modest number of polynomials before finding a satisfactory one), so one might (reasonably) object that this answer isn't actually a "construction". But any method is going to have to show somehow that $operatorname{red}_7 f$ is irreducible, and doing this naively is labor-intensive, as here are $588 + 112 + 24 + 7 = 631$ irreducible polynomials over $Bbb F_7$ of degree $1 leq d leq 4$. If one has a faster way of generating irreducible polynomials over $Bbb F_7$ of degree $8$ that we can then factor over $Bbb F_2, Bbb F_3$ (which is much faster to do manually, see below), one might be able to optimize considerably here.
Like Servaes' approach, the method here uses Dedekind's Theorem to show that $operatorname{Gal}(F / Bbb Q)$ contains certain cycle types. In particular, we'll use that a transitive subgroup of $S_n$ that contains an $(n - 1)$-cycle and a transposition is $S_n$ itself.
Take
$$f(x) := x^8 + 4 x^7 + 3 x^6 + 3 x^5 + 3 x^4 + 5 x^3 + x^2 + 4 x + 5 .$$
Factoring $operatorname{red}_p f$ over $Bbb F_p$ for the below $p$ gives:
$operatorname{red}_7 f$ is irreducible over $f$, so $f$ satisfies the given hypothesis and by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ acts transitively on the roots of $f$.
$operatorname{red}_{2} f = p_3 hat p_3 p_2$ for irreducible (and distinct) polynomials of respective degrees $3, 3, 2$. Again by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ contains a product $sigma$ of cycle type $(3, 3, 2)$, so $sigma^3 in operatorname{Gal}(F / Bbb Q)$ is a transposition.
$operatorname{red}_{3} f = q_7 q_1$ for irreducible polynomials $q_d$, so Dedekind's Theorem this time gives us that $operatorname{Gal}(F / Bbb Q)$ contains a $7$-cycle.
After checking the irreducibility of $operatorname{red}_7 f$ as discussed above, the most intensive verification is checking that $q_7$ is irreducible over $Bbb F_3$, but there are only $8 + 3 + 3 = 14$ irreducible polynomials of degree $1 leq d leq 3$ irreducible over $Bbb F_3$.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
This is not a complete answer, just a start as you indicate that you don't even know where to begin.
Let $finBbb{Z}[x]$ monic. If its image $f_p$ in $Bbb{F}_p[x]$ is separable and factors as $f_p=prod_{i=1}^kg_k$, then $operatorname{Gal}(f)$ contains an element of cycle type $(deg g_1,ldots,deg g_k)$. So it makes sense to start from an irreducibe polynomial $hinBbb{F}_7[x]$ as then any lift $tilde{h}inBbb{Z}[x]$ already has an element of order $8$ in $operatorname{Gal}(tilde{h})$. An easy first candidate is
$$h_7=x^8+x+3inBbb{F}_7[x].$$
To make sure we also have a transpotion in $operatorname{Gal}(f)$, we choose a lift $tilde{h}inBbb{Z}[x]$ that factors into one quadratic and six linear factors mod $2$. A bit of fiddling around yields, for example
$$tilde{h}=x^8+x+3+7(x^7+x^6+x+1)inBbb{Z}[x],$$
so that
$$h_2=x^8+x^7+x^6=x^6(x^2+x+1)inBbb{F}_2[x].$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition. This doesn't quite give you that $operatorname{Gal}(tilde{h})cong S_8$, but gets you on the right track.
EDIT: As pointed out in the comments below $h_2$ is not separable, so this choice of $tilde{h}$ doesn't quite work. I have no doubt the argument can be salvaged, but the result will likely not be as pretty. I'll give it some thought tomorrow.
UPDATE: One way to salvage the argument is to take a larger prime $p$, so that a lift $tilde{h}$ splits into six distinct linear factors and one irreducible quadratic factor. As $degtilde{h}=8$ this requires $pgeq6$, hence $p=11$ is the smallest prime that might work. And indeed, surprisingly little fiddling around shows that the lift
$$tilde{h}=x^8+x+3+7(x+8)big((x+3)(x+4)+6(x+1)(x+2)(x+5)(x+10)big)inBbb{Z}[x],$$
satisfies
$$h_p=(x+1)(x+2)(x+3)(x+5)(x+8)(x+10)(x^2+4x+5)inBbb{F}_p[x],$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition.
How did you find $h_7$?
– Ray Bern
yesterday
An educated guess; there is quite often a $cinBbb{F}_p$ such that $x^n+x+c$ is irreducible.
– Servaes
yesterday
A good technique. But I'm afraid I need to complain about $h_2(x)$ not being separable in $Bbb{F}_2[x]$.
– Jyrki Lahtonen
yesterday
@Jyrki You're absolutely right. It seems the argument needs a bigger prime, the computations will likely not be so clean. I'll give it some thought tomorrow.
– Servaes
yesterday
Many ways to use this idea I think. One way is to specify the factors modulo any finite collection of primes, then do a Chinese remainder theorem combination of the products. And only then lift from $Bbb{Z}_{p_1p_2cdots p_k}$ to $Bbb{Z}$. As you pointed out the end result may not look nice :-)
– Jyrki Lahtonen
yesterday
add a comment |
up vote
3
down vote
This is not a complete answer, just a start as you indicate that you don't even know where to begin.
Let $finBbb{Z}[x]$ monic. If its image $f_p$ in $Bbb{F}_p[x]$ is separable and factors as $f_p=prod_{i=1}^kg_k$, then $operatorname{Gal}(f)$ contains an element of cycle type $(deg g_1,ldots,deg g_k)$. So it makes sense to start from an irreducibe polynomial $hinBbb{F}_7[x]$ as then any lift $tilde{h}inBbb{Z}[x]$ already has an element of order $8$ in $operatorname{Gal}(tilde{h})$. An easy first candidate is
$$h_7=x^8+x+3inBbb{F}_7[x].$$
To make sure we also have a transpotion in $operatorname{Gal}(f)$, we choose a lift $tilde{h}inBbb{Z}[x]$ that factors into one quadratic and six linear factors mod $2$. A bit of fiddling around yields, for example
$$tilde{h}=x^8+x+3+7(x^7+x^6+x+1)inBbb{Z}[x],$$
so that
$$h_2=x^8+x^7+x^6=x^6(x^2+x+1)inBbb{F}_2[x].$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition. This doesn't quite give you that $operatorname{Gal}(tilde{h})cong S_8$, but gets you on the right track.
EDIT: As pointed out in the comments below $h_2$ is not separable, so this choice of $tilde{h}$ doesn't quite work. I have no doubt the argument can be salvaged, but the result will likely not be as pretty. I'll give it some thought tomorrow.
UPDATE: One way to salvage the argument is to take a larger prime $p$, so that a lift $tilde{h}$ splits into six distinct linear factors and one irreducible quadratic factor. As $degtilde{h}=8$ this requires $pgeq6$, hence $p=11$ is the smallest prime that might work. And indeed, surprisingly little fiddling around shows that the lift
$$tilde{h}=x^8+x+3+7(x+8)big((x+3)(x+4)+6(x+1)(x+2)(x+5)(x+10)big)inBbb{Z}[x],$$
satisfies
$$h_p=(x+1)(x+2)(x+3)(x+5)(x+8)(x+10)(x^2+4x+5)inBbb{F}_p[x],$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition.
How did you find $h_7$?
– Ray Bern
yesterday
An educated guess; there is quite often a $cinBbb{F}_p$ such that $x^n+x+c$ is irreducible.
– Servaes
yesterday
A good technique. But I'm afraid I need to complain about $h_2(x)$ not being separable in $Bbb{F}_2[x]$.
– Jyrki Lahtonen
yesterday
@Jyrki You're absolutely right. It seems the argument needs a bigger prime, the computations will likely not be so clean. I'll give it some thought tomorrow.
– Servaes
yesterday
Many ways to use this idea I think. One way is to specify the factors modulo any finite collection of primes, then do a Chinese remainder theorem combination of the products. And only then lift from $Bbb{Z}_{p_1p_2cdots p_k}$ to $Bbb{Z}$. As you pointed out the end result may not look nice :-)
– Jyrki Lahtonen
yesterday
add a comment |
up vote
3
down vote
up vote
3
down vote
This is not a complete answer, just a start as you indicate that you don't even know where to begin.
Let $finBbb{Z}[x]$ monic. If its image $f_p$ in $Bbb{F}_p[x]$ is separable and factors as $f_p=prod_{i=1}^kg_k$, then $operatorname{Gal}(f)$ contains an element of cycle type $(deg g_1,ldots,deg g_k)$. So it makes sense to start from an irreducibe polynomial $hinBbb{F}_7[x]$ as then any lift $tilde{h}inBbb{Z}[x]$ already has an element of order $8$ in $operatorname{Gal}(tilde{h})$. An easy first candidate is
$$h_7=x^8+x+3inBbb{F}_7[x].$$
To make sure we also have a transpotion in $operatorname{Gal}(f)$, we choose a lift $tilde{h}inBbb{Z}[x]$ that factors into one quadratic and six linear factors mod $2$. A bit of fiddling around yields, for example
$$tilde{h}=x^8+x+3+7(x^7+x^6+x+1)inBbb{Z}[x],$$
so that
$$h_2=x^8+x^7+x^6=x^6(x^2+x+1)inBbb{F}_2[x].$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition. This doesn't quite give you that $operatorname{Gal}(tilde{h})cong S_8$, but gets you on the right track.
EDIT: As pointed out in the comments below $h_2$ is not separable, so this choice of $tilde{h}$ doesn't quite work. I have no doubt the argument can be salvaged, but the result will likely not be as pretty. I'll give it some thought tomorrow.
UPDATE: One way to salvage the argument is to take a larger prime $p$, so that a lift $tilde{h}$ splits into six distinct linear factors and one irreducible quadratic factor. As $degtilde{h}=8$ this requires $pgeq6$, hence $p=11$ is the smallest prime that might work. And indeed, surprisingly little fiddling around shows that the lift
$$tilde{h}=x^8+x+3+7(x+8)big((x+3)(x+4)+6(x+1)(x+2)(x+5)(x+10)big)inBbb{Z}[x],$$
satisfies
$$h_p=(x+1)(x+2)(x+3)(x+5)(x+8)(x+10)(x^2+4x+5)inBbb{F}_p[x],$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition.
This is not a complete answer, just a start as you indicate that you don't even know where to begin.
Let $finBbb{Z}[x]$ monic. If its image $f_p$ in $Bbb{F}_p[x]$ is separable and factors as $f_p=prod_{i=1}^kg_k$, then $operatorname{Gal}(f)$ contains an element of cycle type $(deg g_1,ldots,deg g_k)$. So it makes sense to start from an irreducibe polynomial $hinBbb{F}_7[x]$ as then any lift $tilde{h}inBbb{Z}[x]$ already has an element of order $8$ in $operatorname{Gal}(tilde{h})$. An easy first candidate is
$$h_7=x^8+x+3inBbb{F}_7[x].$$
To make sure we also have a transpotion in $operatorname{Gal}(f)$, we choose a lift $tilde{h}inBbb{Z}[x]$ that factors into one quadratic and six linear factors mod $2$. A bit of fiddling around yields, for example
$$tilde{h}=x^8+x+3+7(x^7+x^6+x+1)inBbb{Z}[x],$$
so that
$$h_2=x^8+x^7+x^6=x^6(x^2+x+1)inBbb{F}_2[x].$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition. This doesn't quite give you that $operatorname{Gal}(tilde{h})cong S_8$, but gets you on the right track.
EDIT: As pointed out in the comments below $h_2$ is not separable, so this choice of $tilde{h}$ doesn't quite work. I have no doubt the argument can be salvaged, but the result will likely not be as pretty. I'll give it some thought tomorrow.
UPDATE: One way to salvage the argument is to take a larger prime $p$, so that a lift $tilde{h}$ splits into six distinct linear factors and one irreducible quadratic factor. As $degtilde{h}=8$ this requires $pgeq6$, hence $p=11$ is the smallest prime that might work. And indeed, surprisingly little fiddling around shows that the lift
$$tilde{h}=x^8+x+3+7(x+8)big((x+3)(x+4)+6(x+1)(x+2)(x+5)(x+10)big)inBbb{Z}[x],$$
satisfies
$$h_p=(x+1)(x+2)(x+3)(x+5)(x+8)(x+10)(x^2+4x+5)inBbb{F}_p[x],$$
which shows that $operatorname{Gal}(tilde{h})$ contains a transposition.
edited 17 hours ago
answered yesterday
Servaes
20.6k33789
20.6k33789
How did you find $h_7$?
– Ray Bern
yesterday
An educated guess; there is quite often a $cinBbb{F}_p$ such that $x^n+x+c$ is irreducible.
– Servaes
yesterday
A good technique. But I'm afraid I need to complain about $h_2(x)$ not being separable in $Bbb{F}_2[x]$.
– Jyrki Lahtonen
yesterday
@Jyrki You're absolutely right. It seems the argument needs a bigger prime, the computations will likely not be so clean. I'll give it some thought tomorrow.
– Servaes
yesterday
Many ways to use this idea I think. One way is to specify the factors modulo any finite collection of primes, then do a Chinese remainder theorem combination of the products. And only then lift from $Bbb{Z}_{p_1p_2cdots p_k}$ to $Bbb{Z}$. As you pointed out the end result may not look nice :-)
– Jyrki Lahtonen
yesterday
add a comment |
How did you find $h_7$?
– Ray Bern
yesterday
An educated guess; there is quite often a $cinBbb{F}_p$ such that $x^n+x+c$ is irreducible.
– Servaes
yesterday
A good technique. But I'm afraid I need to complain about $h_2(x)$ not being separable in $Bbb{F}_2[x]$.
– Jyrki Lahtonen
yesterday
@Jyrki You're absolutely right. It seems the argument needs a bigger prime, the computations will likely not be so clean. I'll give it some thought tomorrow.
– Servaes
yesterday
Many ways to use this idea I think. One way is to specify the factors modulo any finite collection of primes, then do a Chinese remainder theorem combination of the products. And only then lift from $Bbb{Z}_{p_1p_2cdots p_k}$ to $Bbb{Z}$. As you pointed out the end result may not look nice :-)
– Jyrki Lahtonen
yesterday
How did you find $h_7$?
– Ray Bern
yesterday
How did you find $h_7$?
– Ray Bern
yesterday
An educated guess; there is quite often a $cinBbb{F}_p$ such that $x^n+x+c$ is irreducible.
– Servaes
yesterday
An educated guess; there is quite often a $cinBbb{F}_p$ such that $x^n+x+c$ is irreducible.
– Servaes
yesterday
A good technique. But I'm afraid I need to complain about $h_2(x)$ not being separable in $Bbb{F}_2[x]$.
– Jyrki Lahtonen
yesterday
A good technique. But I'm afraid I need to complain about $h_2(x)$ not being separable in $Bbb{F}_2[x]$.
– Jyrki Lahtonen
yesterday
@Jyrki You're absolutely right. It seems the argument needs a bigger prime, the computations will likely not be so clean. I'll give it some thought tomorrow.
– Servaes
yesterday
@Jyrki You're absolutely right. It seems the argument needs a bigger prime, the computations will likely not be so clean. I'll give it some thought tomorrow.
– Servaes
yesterday
Many ways to use this idea I think. One way is to specify the factors modulo any finite collection of primes, then do a Chinese remainder theorem combination of the products. And only then lift from $Bbb{Z}_{p_1p_2cdots p_k}$ to $Bbb{Z}$. As you pointed out the end result may not look nice :-)
– Jyrki Lahtonen
yesterday
Many ways to use this idea I think. One way is to specify the factors modulo any finite collection of primes, then do a Chinese remainder theorem combination of the products. And only then lift from $Bbb{Z}_{p_1p_2cdots p_k}$ to $Bbb{Z}$. As you pointed out the end result may not look nice :-)
– Jyrki Lahtonen
yesterday
add a comment |
up vote
0
down vote
This example was produced in the first place by randomly generating polynomials and checking the factorizations with computer help (it only took a modest number of polynomials before finding a satisfactory one), so one might (reasonably) object that this answer isn't actually a "construction". But any method is going to have to show somehow that $operatorname{red}_7 f$ is irreducible, and doing this naively is labor-intensive, as here are $588 + 112 + 24 + 7 = 631$ irreducible polynomials over $Bbb F_7$ of degree $1 leq d leq 4$. If one has a faster way of generating irreducible polynomials over $Bbb F_7$ of degree $8$ that we can then factor over $Bbb F_2, Bbb F_3$ (which is much faster to do manually, see below), one might be able to optimize considerably here.
Like Servaes' approach, the method here uses Dedekind's Theorem to show that $operatorname{Gal}(F / Bbb Q)$ contains certain cycle types. In particular, we'll use that a transitive subgroup of $S_n$ that contains an $(n - 1)$-cycle and a transposition is $S_n$ itself.
Take
$$f(x) := x^8 + 4 x^7 + 3 x^6 + 3 x^5 + 3 x^4 + 5 x^3 + x^2 + 4 x + 5 .$$
Factoring $operatorname{red}_p f$ over $Bbb F_p$ for the below $p$ gives:
$operatorname{red}_7 f$ is irreducible over $f$, so $f$ satisfies the given hypothesis and by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ acts transitively on the roots of $f$.
$operatorname{red}_{2} f = p_3 hat p_3 p_2$ for irreducible (and distinct) polynomials of respective degrees $3, 3, 2$. Again by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ contains a product $sigma$ of cycle type $(3, 3, 2)$, so $sigma^3 in operatorname{Gal}(F / Bbb Q)$ is a transposition.
$operatorname{red}_{3} f = q_7 q_1$ for irreducible polynomials $q_d$, so Dedekind's Theorem this time gives us that $operatorname{Gal}(F / Bbb Q)$ contains a $7$-cycle.
After checking the irreducibility of $operatorname{red}_7 f$ as discussed above, the most intensive verification is checking that $q_7$ is irreducible over $Bbb F_3$, but there are only $8 + 3 + 3 = 14$ irreducible polynomials of degree $1 leq d leq 3$ irreducible over $Bbb F_3$.
add a comment |
up vote
0
down vote
This example was produced in the first place by randomly generating polynomials and checking the factorizations with computer help (it only took a modest number of polynomials before finding a satisfactory one), so one might (reasonably) object that this answer isn't actually a "construction". But any method is going to have to show somehow that $operatorname{red}_7 f$ is irreducible, and doing this naively is labor-intensive, as here are $588 + 112 + 24 + 7 = 631$ irreducible polynomials over $Bbb F_7$ of degree $1 leq d leq 4$. If one has a faster way of generating irreducible polynomials over $Bbb F_7$ of degree $8$ that we can then factor over $Bbb F_2, Bbb F_3$ (which is much faster to do manually, see below), one might be able to optimize considerably here.
Like Servaes' approach, the method here uses Dedekind's Theorem to show that $operatorname{Gal}(F / Bbb Q)$ contains certain cycle types. In particular, we'll use that a transitive subgroup of $S_n$ that contains an $(n - 1)$-cycle and a transposition is $S_n$ itself.
Take
$$f(x) := x^8 + 4 x^7 + 3 x^6 + 3 x^5 + 3 x^4 + 5 x^3 + x^2 + 4 x + 5 .$$
Factoring $operatorname{red}_p f$ over $Bbb F_p$ for the below $p$ gives:
$operatorname{red}_7 f$ is irreducible over $f$, so $f$ satisfies the given hypothesis and by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ acts transitively on the roots of $f$.
$operatorname{red}_{2} f = p_3 hat p_3 p_2$ for irreducible (and distinct) polynomials of respective degrees $3, 3, 2$. Again by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ contains a product $sigma$ of cycle type $(3, 3, 2)$, so $sigma^3 in operatorname{Gal}(F / Bbb Q)$ is a transposition.
$operatorname{red}_{3} f = q_7 q_1$ for irreducible polynomials $q_d$, so Dedekind's Theorem this time gives us that $operatorname{Gal}(F / Bbb Q)$ contains a $7$-cycle.
After checking the irreducibility of $operatorname{red}_7 f$ as discussed above, the most intensive verification is checking that $q_7$ is irreducible over $Bbb F_3$, but there are only $8 + 3 + 3 = 14$ irreducible polynomials of degree $1 leq d leq 3$ irreducible over $Bbb F_3$.
add a comment |
up vote
0
down vote
up vote
0
down vote
This example was produced in the first place by randomly generating polynomials and checking the factorizations with computer help (it only took a modest number of polynomials before finding a satisfactory one), so one might (reasonably) object that this answer isn't actually a "construction". But any method is going to have to show somehow that $operatorname{red}_7 f$ is irreducible, and doing this naively is labor-intensive, as here are $588 + 112 + 24 + 7 = 631$ irreducible polynomials over $Bbb F_7$ of degree $1 leq d leq 4$. If one has a faster way of generating irreducible polynomials over $Bbb F_7$ of degree $8$ that we can then factor over $Bbb F_2, Bbb F_3$ (which is much faster to do manually, see below), one might be able to optimize considerably here.
Like Servaes' approach, the method here uses Dedekind's Theorem to show that $operatorname{Gal}(F / Bbb Q)$ contains certain cycle types. In particular, we'll use that a transitive subgroup of $S_n$ that contains an $(n - 1)$-cycle and a transposition is $S_n$ itself.
Take
$$f(x) := x^8 + 4 x^7 + 3 x^6 + 3 x^5 + 3 x^4 + 5 x^3 + x^2 + 4 x + 5 .$$
Factoring $operatorname{red}_p f$ over $Bbb F_p$ for the below $p$ gives:
$operatorname{red}_7 f$ is irreducible over $f$, so $f$ satisfies the given hypothesis and by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ acts transitively on the roots of $f$.
$operatorname{red}_{2} f = p_3 hat p_3 p_2$ for irreducible (and distinct) polynomials of respective degrees $3, 3, 2$. Again by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ contains a product $sigma$ of cycle type $(3, 3, 2)$, so $sigma^3 in operatorname{Gal}(F / Bbb Q)$ is a transposition.
$operatorname{red}_{3} f = q_7 q_1$ for irreducible polynomials $q_d$, so Dedekind's Theorem this time gives us that $operatorname{Gal}(F / Bbb Q)$ contains a $7$-cycle.
After checking the irreducibility of $operatorname{red}_7 f$ as discussed above, the most intensive verification is checking that $q_7$ is irreducible over $Bbb F_3$, but there are only $8 + 3 + 3 = 14$ irreducible polynomials of degree $1 leq d leq 3$ irreducible over $Bbb F_3$.
This example was produced in the first place by randomly generating polynomials and checking the factorizations with computer help (it only took a modest number of polynomials before finding a satisfactory one), so one might (reasonably) object that this answer isn't actually a "construction". But any method is going to have to show somehow that $operatorname{red}_7 f$ is irreducible, and doing this naively is labor-intensive, as here are $588 + 112 + 24 + 7 = 631$ irreducible polynomials over $Bbb F_7$ of degree $1 leq d leq 4$. If one has a faster way of generating irreducible polynomials over $Bbb F_7$ of degree $8$ that we can then factor over $Bbb F_2, Bbb F_3$ (which is much faster to do manually, see below), one might be able to optimize considerably here.
Like Servaes' approach, the method here uses Dedekind's Theorem to show that $operatorname{Gal}(F / Bbb Q)$ contains certain cycle types. In particular, we'll use that a transitive subgroup of $S_n$ that contains an $(n - 1)$-cycle and a transposition is $S_n$ itself.
Take
$$f(x) := x^8 + 4 x^7 + 3 x^6 + 3 x^5 + 3 x^4 + 5 x^3 + x^2 + 4 x + 5 .$$
Factoring $operatorname{red}_p f$ over $Bbb F_p$ for the below $p$ gives:
$operatorname{red}_7 f$ is irreducible over $f$, so $f$ satisfies the given hypothesis and by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ acts transitively on the roots of $f$.
$operatorname{red}_{2} f = p_3 hat p_3 p_2$ for irreducible (and distinct) polynomials of respective degrees $3, 3, 2$. Again by Dedekind's Theorem $operatorname{Gal}(F / Bbb Q)$ contains a product $sigma$ of cycle type $(3, 3, 2)$, so $sigma^3 in operatorname{Gal}(F / Bbb Q)$ is a transposition.
$operatorname{red}_{3} f = q_7 q_1$ for irreducible polynomials $q_d$, so Dedekind's Theorem this time gives us that $operatorname{Gal}(F / Bbb Q)$ contains a $7$-cycle.
After checking the irreducibility of $operatorname{red}_7 f$ as discussed above, the most intensive verification is checking that $q_7$ is irreducible over $Bbb F_3$, but there are only $8 + 3 + 3 = 14$ irreducible polynomials of degree $1 leq d leq 3$ irreducible over $Bbb F_3$.
answered 14 hours ago
Travis
58.7k765142
58.7k765142
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005051%2fconstructing-a-polynomial-given-the-galois-group-of-its-splitting-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Replace $S_8$ by $S_3$. Take $f in mathbb{Z}[x], deg(f) = 3$ with $f in mathbb{Z}/(p)[x] $ irreducible. Thus $f in mathbb{Z}[x]$ is irreducible and $R = mathbb{Z}[x]/(f(x))$ is an integral domain. Then let $g(y) = frac{f(y)}{y-x} in R[y]$ and assume $g(y) in R/(q)[y]$ is irreducible (note we can change $gbmod q$ without changing $f bmod p$), thus $g(y) in R[y]$ is irreducible and $R[y]/(g(y))$ is an integral domain. Whence $F = Frac(R[y]/(g(y)))$ is the splitting field of $f(x) in mathbb{Q}[x]$ and $[F:mathbb{Q}] = 6$ implies $Gal(F/mathbb{Q}) = S_3$.
– reuns
yesterday
2
Are you familiar with Dedekind's theorem on the relation between irreducible factors of $f$ mod primes and cycle types of the elements of $operatorname{Gal}(f)$? This would suggest to start with an irreducible polynomial in $Bbb{Z}/7Bbb{Z}[X]$ and lift it to $Bbb{Z}[X]$; this will give you a Galois group with a $7$-cycle. Then it does not take much to get all of $S_8$, e.g. a transposition will do.
– Servaes
yesterday
*In the above it should say $8$-cycle in stead of $7$-cycle.
– Servaes
yesterday