Can't understand a specific step in finding $operatorname{Cov}(X,Y)$
$begingroup$
Given the following joint PDF:
$$f_{X,Y}(t,s)=begin{cases}frac{1}{4}&,(t,s)in D \ 0 &,text{ else }end{cases}$$
where $D={(t,s):|t|+sle 2,,,sge 0}$. I need to find $operatorname{Cov}(X,Y)$.
For doing that, I started by finding the marginal density functions, so I would be able to calculate $E[X],E[Y]$.
According to the solution:
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & , 0leq s leq 1 \
0 & ,text{ else }
end{cases}
end{equation}
I got to the same one, except the region. I have no clue why $0leq s leq 1 $ is the correct region?
This is the plot:
Could anyone please explain me how this region was picked?
probability probability-distributions random-variables
$endgroup$
add a comment |
$begingroup$
Given the following joint PDF:
$$f_{X,Y}(t,s)=begin{cases}frac{1}{4}&,(t,s)in D \ 0 &,text{ else }end{cases}$$
where $D={(t,s):|t|+sle 2,,,sge 0}$. I need to find $operatorname{Cov}(X,Y)$.
For doing that, I started by finding the marginal density functions, so I would be able to calculate $E[X],E[Y]$.
According to the solution:
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & , 0leq s leq 1 \
0 & ,text{ else }
end{cases}
end{equation}
I got to the same one, except the region. I have no clue why $0leq s leq 1 $ is the correct region?
This is the plot:
Could anyone please explain me how this region was picked?
probability probability-distributions random-variables
$endgroup$
1
$begingroup$
The solution given is wrong.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 9:59
$begingroup$
Could you please elaborate?
$endgroup$
– superuser123
Jan 28 at 10:05
add a comment |
$begingroup$
Given the following joint PDF:
$$f_{X,Y}(t,s)=begin{cases}frac{1}{4}&,(t,s)in D \ 0 &,text{ else }end{cases}$$
where $D={(t,s):|t|+sle 2,,,sge 0}$. I need to find $operatorname{Cov}(X,Y)$.
For doing that, I started by finding the marginal density functions, so I would be able to calculate $E[X],E[Y]$.
According to the solution:
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & , 0leq s leq 1 \
0 & ,text{ else }
end{cases}
end{equation}
I got to the same one, except the region. I have no clue why $0leq s leq 1 $ is the correct region?
This is the plot:
Could anyone please explain me how this region was picked?
probability probability-distributions random-variables
$endgroup$
Given the following joint PDF:
$$f_{X,Y}(t,s)=begin{cases}frac{1}{4}&,(t,s)in D \ 0 &,text{ else }end{cases}$$
where $D={(t,s):|t|+sle 2,,,sge 0}$. I need to find $operatorname{Cov}(X,Y)$.
For doing that, I started by finding the marginal density functions, so I would be able to calculate $E[X],E[Y]$.
According to the solution:
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & , 0leq s leq 1 \
0 & ,text{ else }
end{cases}
end{equation}
I got to the same one, except the region. I have no clue why $0leq s leq 1 $ is the correct region?
This is the plot:
Could anyone please explain me how this region was picked?
probability probability-distributions random-variables
probability probability-distributions random-variables
edited Jan 28 at 10:37


StubbornAtom
6,30831440
6,30831440
asked Jan 28 at 9:52
superuser123superuser123
48628
48628
1
$begingroup$
The solution given is wrong.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 9:59
$begingroup$
Could you please elaborate?
$endgroup$
– superuser123
Jan 28 at 10:05
add a comment |
1
$begingroup$
The solution given is wrong.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 9:59
$begingroup$
Could you please elaborate?
$endgroup$
– superuser123
Jan 28 at 10:05
1
1
$begingroup$
The solution given is wrong.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 9:59
$begingroup$
The solution given is wrong.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 9:59
$begingroup$
Could you please elaborate?
$endgroup$
– superuser123
Jan 28 at 10:05
$begingroup$
Could you please elaborate?
$endgroup$
– superuser123
Jan 28 at 10:05
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$f_Y(s)=int_{-(2-s)}^{2-s} frac 1 4 , dt= frac 12 (2-s)$ for $0leq s leq 2$.
$endgroup$
add a comment |
$begingroup$
The marginal density of $Y$ is given by
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 2 \
0 & text {elsewhere}
end{cases}
end{equation}
Observe that if instead
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 1 \
0 & text {elsewhere}
end{cases}
end{equation}
then $$int_{0}^{1} f_Y (s) text {ds} = frac 3 4 neq 1.$$
and you may find that $operatorname {Cov} (X,Y) = 0$ i.e. $X$ and $Y$ are uncorrelated.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090672%2fcant-understand-a-specific-step-in-finding-operatornamecovx-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$f_Y(s)=int_{-(2-s)}^{2-s} frac 1 4 , dt= frac 12 (2-s)$ for $0leq s leq 2$.
$endgroup$
add a comment |
$begingroup$
$f_Y(s)=int_{-(2-s)}^{2-s} frac 1 4 , dt= frac 12 (2-s)$ for $0leq s leq 2$.
$endgroup$
add a comment |
$begingroup$
$f_Y(s)=int_{-(2-s)}^{2-s} frac 1 4 , dt= frac 12 (2-s)$ for $0leq s leq 2$.
$endgroup$
$f_Y(s)=int_{-(2-s)}^{2-s} frac 1 4 , dt= frac 12 (2-s)$ for $0leq s leq 2$.
answered Jan 28 at 10:10


Kavi Rama MurthyKavi Rama Murthy
70.6k53170
70.6k53170
add a comment |
add a comment |
$begingroup$
The marginal density of $Y$ is given by
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 2 \
0 & text {elsewhere}
end{cases}
end{equation}
Observe that if instead
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 1 \
0 & text {elsewhere}
end{cases}
end{equation}
then $$int_{0}^{1} f_Y (s) text {ds} = frac 3 4 neq 1.$$
and you may find that $operatorname {Cov} (X,Y) = 0$ i.e. $X$ and $Y$ are uncorrelated.
$endgroup$
add a comment |
$begingroup$
The marginal density of $Y$ is given by
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 2 \
0 & text {elsewhere}
end{cases}
end{equation}
Observe that if instead
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 1 \
0 & text {elsewhere}
end{cases}
end{equation}
then $$int_{0}^{1} f_Y (s) text {ds} = frac 3 4 neq 1.$$
and you may find that $operatorname {Cov} (X,Y) = 0$ i.e. $X$ and $Y$ are uncorrelated.
$endgroup$
add a comment |
$begingroup$
The marginal density of $Y$ is given by
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 2 \
0 & text {elsewhere}
end{cases}
end{equation}
Observe that if instead
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 1 \
0 & text {elsewhere}
end{cases}
end{equation}
then $$int_{0}^{1} f_Y (s) text {ds} = frac 3 4 neq 1.$$
and you may find that $operatorname {Cov} (X,Y) = 0$ i.e. $X$ and $Y$ are uncorrelated.
$endgroup$
The marginal density of $Y$ is given by
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 2 \
0 & text {elsewhere}
end{cases}
end{equation}
Observe that if instead
begin{equation}
f_{Y}(s)=
begin{cases}
frac{1}{2}(2-s) & 0leq s leq 1 \
0 & text {elsewhere}
end{cases}
end{equation}
then $$int_{0}^{1} f_Y (s) text {ds} = frac 3 4 neq 1.$$
and you may find that $operatorname {Cov} (X,Y) = 0$ i.e. $X$ and $Y$ are uncorrelated.
edited Jan 28 at 14:47
answered Jan 28 at 10:30


Dbchatto67Dbchatto67
2,184320
2,184320
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090672%2fcant-understand-a-specific-step-in-finding-operatornamecovx-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The solution given is wrong.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 9:59
$begingroup$
Could you please elaborate?
$endgroup$
– superuser123
Jan 28 at 10:05