If $lambda_n = int_{0}^{1} frac{dt}{(1+t)^n}$, for $n in mathbb{N}$, then $,lim_{n to infty}...
up vote
1
down vote
favorite
If $displaystylelambda_n = int_{0}^{1} frac{dt}{(1+t)^n}$ for $n in mathbb{N}$. Then prove that $lim_{n to infty} (lambda_{n})^{1/n}=1.$
$$lambda_n=int_{0}^{1} frac{dt}{(1+t)^n}= frac{2^{1-n}}{1-n}-frac{1}{1-n}$$
Now if we use L'Hôpital's rule, then it gets cumbersome. Is there any short method? Thank you.
calculus real-analysis limits definite-integrals limits-without-lhopital
add a comment |
up vote
1
down vote
favorite
If $displaystylelambda_n = int_{0}^{1} frac{dt}{(1+t)^n}$ for $n in mathbb{N}$. Then prove that $lim_{n to infty} (lambda_{n})^{1/n}=1.$
$$lambda_n=int_{0}^{1} frac{dt}{(1+t)^n}= frac{2^{1-n}}{1-n}-frac{1}{1-n}$$
Now if we use L'Hôpital's rule, then it gets cumbersome. Is there any short method? Thank you.
calculus real-analysis limits definite-integrals limits-without-lhopital
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
If $displaystylelambda_n = int_{0}^{1} frac{dt}{(1+t)^n}$ for $n in mathbb{N}$. Then prove that $lim_{n to infty} (lambda_{n})^{1/n}=1.$
$$lambda_n=int_{0}^{1} frac{dt}{(1+t)^n}= frac{2^{1-n}}{1-n}-frac{1}{1-n}$$
Now if we use L'Hôpital's rule, then it gets cumbersome. Is there any short method? Thank you.
calculus real-analysis limits definite-integrals limits-without-lhopital
If $displaystylelambda_n = int_{0}^{1} frac{dt}{(1+t)^n}$ for $n in mathbb{N}$. Then prove that $lim_{n to infty} (lambda_{n})^{1/n}=1.$
$$lambda_n=int_{0}^{1} frac{dt}{(1+t)^n}= frac{2^{1-n}}{1-n}-frac{1}{1-n}$$
Now if we use L'Hôpital's rule, then it gets cumbersome. Is there any short method? Thank you.
calculus real-analysis limits definite-integrals limits-without-lhopital
calculus real-analysis limits definite-integrals limits-without-lhopital
edited 17 hours ago
Yiorgos S. Smyrlis
61.4k1383161
61.4k1383161
asked 18 hours ago
ramanujan
640713
640713
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
Actually,
$$
int_0^1 frac{dt}{(1+t)^n}=left.frac{1}{1-n}frac{1}{(1+t)^{n-1}},right|_0^1=frac{1}{n-1}-frac{2^{-n+1}}{n-1}
$$
and hence, for all $n>1$
$$
frac{1}{2(n-1)}<int_0^1 frac{dt}{(1+t)^n}<frac{1}{n-1}.
$$
Next, observe that
$$
lim_{ntoinfty}left(frac{1}{2(n-1)}right)^{1/n}=lim_{ntoinfty}left(frac{1}{n-1}right)^{1/n}=1.
$$
thank you. I wonder how such tricks come in your mind.
– ramanujan
18 hours ago
1
@ramanujan: the old sage said Calculus is all about elementary inequalities.
– Jack D'Aurizio
15 hours ago
add a comment |
up vote
2
down vote
In general, if $f(x)$ is a continuous and non-negative function on $[0,1]$,
$$ lim_{nto +infty}sqrt[n]{int_{0}^{1}f(x)^n,dx} = max_{xin[0,1]}f(x) $$
by the inequality between means.
Thanks for general result
– ramanujan
15 hours ago
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Actually,
$$
int_0^1 frac{dt}{(1+t)^n}=left.frac{1}{1-n}frac{1}{(1+t)^{n-1}},right|_0^1=frac{1}{n-1}-frac{2^{-n+1}}{n-1}
$$
and hence, for all $n>1$
$$
frac{1}{2(n-1)}<int_0^1 frac{dt}{(1+t)^n}<frac{1}{n-1}.
$$
Next, observe that
$$
lim_{ntoinfty}left(frac{1}{2(n-1)}right)^{1/n}=lim_{ntoinfty}left(frac{1}{n-1}right)^{1/n}=1.
$$
thank you. I wonder how such tricks come in your mind.
– ramanujan
18 hours ago
1
@ramanujan: the old sage said Calculus is all about elementary inequalities.
– Jack D'Aurizio
15 hours ago
add a comment |
up vote
4
down vote
accepted
Actually,
$$
int_0^1 frac{dt}{(1+t)^n}=left.frac{1}{1-n}frac{1}{(1+t)^{n-1}},right|_0^1=frac{1}{n-1}-frac{2^{-n+1}}{n-1}
$$
and hence, for all $n>1$
$$
frac{1}{2(n-1)}<int_0^1 frac{dt}{(1+t)^n}<frac{1}{n-1}.
$$
Next, observe that
$$
lim_{ntoinfty}left(frac{1}{2(n-1)}right)^{1/n}=lim_{ntoinfty}left(frac{1}{n-1}right)^{1/n}=1.
$$
thank you. I wonder how such tricks come in your mind.
– ramanujan
18 hours ago
1
@ramanujan: the old sage said Calculus is all about elementary inequalities.
– Jack D'Aurizio
15 hours ago
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Actually,
$$
int_0^1 frac{dt}{(1+t)^n}=left.frac{1}{1-n}frac{1}{(1+t)^{n-1}},right|_0^1=frac{1}{n-1}-frac{2^{-n+1}}{n-1}
$$
and hence, for all $n>1$
$$
frac{1}{2(n-1)}<int_0^1 frac{dt}{(1+t)^n}<frac{1}{n-1}.
$$
Next, observe that
$$
lim_{ntoinfty}left(frac{1}{2(n-1)}right)^{1/n}=lim_{ntoinfty}left(frac{1}{n-1}right)^{1/n}=1.
$$
Actually,
$$
int_0^1 frac{dt}{(1+t)^n}=left.frac{1}{1-n}frac{1}{(1+t)^{n-1}},right|_0^1=frac{1}{n-1}-frac{2^{-n+1}}{n-1}
$$
and hence, for all $n>1$
$$
frac{1}{2(n-1)}<int_0^1 frac{dt}{(1+t)^n}<frac{1}{n-1}.
$$
Next, observe that
$$
lim_{ntoinfty}left(frac{1}{2(n-1)}right)^{1/n}=lim_{ntoinfty}left(frac{1}{n-1}right)^{1/n}=1.
$$
answered 18 hours ago
Yiorgos S. Smyrlis
61.4k1383161
61.4k1383161
thank you. I wonder how such tricks come in your mind.
– ramanujan
18 hours ago
1
@ramanujan: the old sage said Calculus is all about elementary inequalities.
– Jack D'Aurizio
15 hours ago
add a comment |
thank you. I wonder how such tricks come in your mind.
– ramanujan
18 hours ago
1
@ramanujan: the old sage said Calculus is all about elementary inequalities.
– Jack D'Aurizio
15 hours ago
thank you. I wonder how such tricks come in your mind.
– ramanujan
18 hours ago
thank you. I wonder how such tricks come in your mind.
– ramanujan
18 hours ago
1
1
@ramanujan: the old sage said Calculus is all about elementary inequalities.
– Jack D'Aurizio
15 hours ago
@ramanujan: the old sage said Calculus is all about elementary inequalities.
– Jack D'Aurizio
15 hours ago
add a comment |
up vote
2
down vote
In general, if $f(x)$ is a continuous and non-negative function on $[0,1]$,
$$ lim_{nto +infty}sqrt[n]{int_{0}^{1}f(x)^n,dx} = max_{xin[0,1]}f(x) $$
by the inequality between means.
Thanks for general result
– ramanujan
15 hours ago
add a comment |
up vote
2
down vote
In general, if $f(x)$ is a continuous and non-negative function on $[0,1]$,
$$ lim_{nto +infty}sqrt[n]{int_{0}^{1}f(x)^n,dx} = max_{xin[0,1]}f(x) $$
by the inequality between means.
Thanks for general result
– ramanujan
15 hours ago
add a comment |
up vote
2
down vote
up vote
2
down vote
In general, if $f(x)$ is a continuous and non-negative function on $[0,1]$,
$$ lim_{nto +infty}sqrt[n]{int_{0}^{1}f(x)^n,dx} = max_{xin[0,1]}f(x) $$
by the inequality between means.
In general, if $f(x)$ is a continuous and non-negative function on $[0,1]$,
$$ lim_{nto +infty}sqrt[n]{int_{0}^{1}f(x)^n,dx} = max_{xin[0,1]}f(x) $$
by the inequality between means.
answered 15 hours ago
Jack D'Aurizio
282k33274653
282k33274653
Thanks for general result
– ramanujan
15 hours ago
add a comment |
Thanks for general result
– ramanujan
15 hours ago
Thanks for general result
– ramanujan
15 hours ago
Thanks for general result
– ramanujan
15 hours ago
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004767%2fif-lambda-n-int-01-fracdt1tn-for-n-in-mathbbn-then%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown