Prove the nxn matrix is positive











up vote
0
down vote

favorite












Im trying to solve this exercise:



Let $n$ be a positive integer and A the $nxn$ matrix



$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$



Prove that A is positive.



Already notice that $A$ is symmetric.



If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$



$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$



Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.










share|cite|improve this question






















  • I think you should try using determinant.
    – Apocalypse
    yesterday






  • 2




    Possible duplicate as this.
    – xbh
    yesterday






  • 1




    en.wikipedia.org/wiki/Hilbert_matrix
    – Will Jagy
    yesterday










  • Thank !!! Actually is a duplicate, so sorry. Thanks again!!
    – Malena Manzanares
    yesterday















up vote
0
down vote

favorite












Im trying to solve this exercise:



Let $n$ be a positive integer and A the $nxn$ matrix



$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$



Prove that A is positive.



Already notice that $A$ is symmetric.



If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$



$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$



Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.










share|cite|improve this question






















  • I think you should try using determinant.
    – Apocalypse
    yesterday






  • 2




    Possible duplicate as this.
    – xbh
    yesterday






  • 1




    en.wikipedia.org/wiki/Hilbert_matrix
    – Will Jagy
    yesterday










  • Thank !!! Actually is a duplicate, so sorry. Thanks again!!
    – Malena Manzanares
    yesterday













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Im trying to solve this exercise:



Let $n$ be a positive integer and A the $nxn$ matrix



$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$



Prove that A is positive.



Already notice that $A$ is symmetric.



If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$



$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$



Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.










share|cite|improve this question













Im trying to solve this exercise:



Let $n$ be a positive integer and A the $nxn$ matrix



$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$



Prove that A is positive.



Already notice that $A$ is symmetric.



If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$



$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$



$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$



Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.







linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Malena Manzanares

243




243












  • I think you should try using determinant.
    – Apocalypse
    yesterday






  • 2




    Possible duplicate as this.
    – xbh
    yesterday






  • 1




    en.wikipedia.org/wiki/Hilbert_matrix
    – Will Jagy
    yesterday










  • Thank !!! Actually is a duplicate, so sorry. Thanks again!!
    – Malena Manzanares
    yesterday


















  • I think you should try using determinant.
    – Apocalypse
    yesterday






  • 2




    Possible duplicate as this.
    – xbh
    yesterday






  • 1




    en.wikipedia.org/wiki/Hilbert_matrix
    – Will Jagy
    yesterday










  • Thank !!! Actually is a duplicate, so sorry. Thanks again!!
    – Malena Manzanares
    yesterday
















I think you should try using determinant.
– Apocalypse
yesterday




I think you should try using determinant.
– Apocalypse
yesterday




2




2




Possible duplicate as this.
– xbh
yesterday




Possible duplicate as this.
– xbh
yesterday




1




1




en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday




en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday












Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday




Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005183%2fprove-the-nxn-matrix-is-positive%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005183%2fprove-the-nxn-matrix-is-positive%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

ts Property 'filter' does not exist on type '{}'

mat-slide-toggle shouldn't change it's state when I click cancel in confirmation window