Prove the nxn matrix is positive
up vote
0
down vote
favorite
Im trying to solve this exercise:
Let $n$ be a positive integer and A the $nxn$ matrix
$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$
Prove that A is positive.
Already notice that $A$ is symmetric.
If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$
$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$
Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.
linear-algebra
add a comment |
up vote
0
down vote
favorite
Im trying to solve this exercise:
Let $n$ be a positive integer and A the $nxn$ matrix
$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$
Prove that A is positive.
Already notice that $A$ is symmetric.
If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$
$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$
Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.
linear-algebra
I think you should try using determinant.
– Apocalypse
yesterday
2
Possible duplicate as this.
– xbh
yesterday
1
en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday
Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Im trying to solve this exercise:
Let $n$ be a positive integer and A the $nxn$ matrix
$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$
Prove that A is positive.
Already notice that $A$ is symmetric.
If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$
$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$
Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.
linear-algebra
Im trying to solve this exercise:
Let $n$ be a positive integer and A the $nxn$ matrix
$A=begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}$
Prove that A is positive.
Already notice that $A$ is symmetric.
If $X=(x_1,dots,x_n)neq 0$ im trying to prove $X^TAX>0$.
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
1 & 1/2 & 1/3 &dots & 1/n \
1/2 & 1/3 & 1/4 & dots & 1/(n+1) \
vdots \
1/n & 1/(n+1) & 1/(n+2) & dots & 1/(2n-1)
end{bmatrix}
begin{bmatrix}
x_1\
x_2\
vdots\
x_n
end{bmatrix}=$
$begin{bmatrix}
x_1&x_2&dots&x_n\
end{bmatrix}
begin{bmatrix}
x_1+ x_2/2 + x_3/3 +dots + x_n/n \
x_1/2+x_2/3 + x_3/4 + dots + x_n/(n+1) \
vdots \
x_1/n + x_2/(n+1) + x_3/(n+2) + dots + x_n/(2n-1)
end{bmatrix}=$
$x_1^2+frac{x_1x_2}{2}+frac{x_1x_3}{3}+dots+frac{x_1x_n}{n}+frac{x_2^2}{3}+frac{x_2x_3}{4}+dots+frac{x_2x_n}{n+1}+dots+frac{x_nx_1}{n}+dots+frac{x_n^2}{2n-1}$
Its clear to me that the sum has positive adds ($x_i^2$), but also have negative adds... my problem is how conclude this sum is positive.
linear-algebra
linear-algebra
asked yesterday
Malena Manzanares
243
243
I think you should try using determinant.
– Apocalypse
yesterday
2
Possible duplicate as this.
– xbh
yesterday
1
en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday
Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday
add a comment |
I think you should try using determinant.
– Apocalypse
yesterday
2
Possible duplicate as this.
– xbh
yesterday
1
en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday
Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday
I think you should try using determinant.
– Apocalypse
yesterday
I think you should try using determinant.
– Apocalypse
yesterday
2
2
Possible duplicate as this.
– xbh
yesterday
Possible duplicate as this.
– xbh
yesterday
1
1
en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday
en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday
Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday
Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005183%2fprove-the-nxn-matrix-is-positive%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I think you should try using determinant.
– Apocalypse
yesterday
2
Possible duplicate as this.
– xbh
yesterday
1
en.wikipedia.org/wiki/Hilbert_matrix
– Will Jagy
yesterday
Thank !!! Actually is a duplicate, so sorry. Thanks again!!
– Malena Manzanares
yesterday