Prove that $lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.












2












$begingroup$



Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.




This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...



$displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$



I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.




    This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...



    $displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$



    I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$



      Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.




      This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...



      $displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$



      I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?










      share|cite|improve this question











      $endgroup$





      Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.




      This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...



      $displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$



      I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?







      limits multivariable-calculus epsilon-delta






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 3 at 6:04









      El borito

      664216




      664216










      asked Feb 3 at 3:32









      numericalorangenumericalorange

      1,949314




      1,949314






















          4 Answers
          4






          active

          oldest

          votes


















          2












          $begingroup$

          Hint: To finish ...



          $$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Another hint: $(|x| - |y|)^2 geqslant 0$
            $endgroup$
            – RRL
            Feb 3 at 3:48










          • $begingroup$
            Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
            $endgroup$
            – numericalorange
            Feb 3 at 4:04












          • $begingroup$
            I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
            $endgroup$
            – numericalorange
            Feb 3 at 4:05






          • 1




            $begingroup$
            So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
            $endgroup$
            – RRL
            Feb 3 at 4:07






          • 1




            $begingroup$
            ... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
            $endgroup$
            – RRL
            Feb 3 at 4:09



















          2












          $begingroup$

          To begin with, notice that
          begin{align*}
          begin{cases}
          |x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
          |y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
          end{cases}Longrightarrow
          begin{cases}
          displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
          displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
          end{cases}
          end{align*}

          Furthermore, the given expression can be split as the following sum



          begin{align*}
          E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
          end{align*}



          As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            You can use polar coordinates:
            $$x=rcos t; y=r sin t;\
            lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):




              • $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$


              So, you get
              begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
              & = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
              & leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
              & stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
              & = & frac{3}{2}sqrt{x^2+y^2} \
              & stackrel{(x,y)to (0,0)}{longrightarrow} & 0
              end{eqnarray*}






              share|cite|improve this answer









              $endgroup$














                Your Answer








                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098132%2fprove-that-lim-x-y-to-0-0-fracx2xyy2-sqrtx2y2-0%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                Hint: To finish ...



                $$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  Another hint: $(|x| - |y|)^2 geqslant 0$
                  $endgroup$
                  – RRL
                  Feb 3 at 3:48










                • $begingroup$
                  Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:04












                • $begingroup$
                  I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:05






                • 1




                  $begingroup$
                  So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:07






                • 1




                  $begingroup$
                  ... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:09
















                2












                $begingroup$

                Hint: To finish ...



                $$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  Another hint: $(|x| - |y|)^2 geqslant 0$
                  $endgroup$
                  – RRL
                  Feb 3 at 3:48










                • $begingroup$
                  Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:04












                • $begingroup$
                  I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:05






                • 1




                  $begingroup$
                  So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:07






                • 1




                  $begingroup$
                  ... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:09














                2












                2








                2





                $begingroup$

                Hint: To finish ...



                $$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$






                share|cite|improve this answer









                $endgroup$



                Hint: To finish ...



                $$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Feb 3 at 3:41









                RRLRRL

                53.7k52574




                53.7k52574












                • $begingroup$
                  Another hint: $(|x| - |y|)^2 geqslant 0$
                  $endgroup$
                  – RRL
                  Feb 3 at 3:48










                • $begingroup$
                  Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:04












                • $begingroup$
                  I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:05






                • 1




                  $begingroup$
                  So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:07






                • 1




                  $begingroup$
                  ... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:09


















                • $begingroup$
                  Another hint: $(|x| - |y|)^2 geqslant 0$
                  $endgroup$
                  – RRL
                  Feb 3 at 3:48










                • $begingroup$
                  Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:04












                • $begingroup$
                  I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
                  $endgroup$
                  – numericalorange
                  Feb 3 at 4:05






                • 1




                  $begingroup$
                  So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:07






                • 1




                  $begingroup$
                  ... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
                  $endgroup$
                  – RRL
                  Feb 3 at 4:09
















                $begingroup$
                Another hint: $(|x| - |y|)^2 geqslant 0$
                $endgroup$
                – RRL
                Feb 3 at 3:48




                $begingroup$
                Another hint: $(|x| - |y|)^2 geqslant 0$
                $endgroup$
                – RRL
                Feb 3 at 3:48












                $begingroup$
                Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
                $endgroup$
                – numericalorange
                Feb 3 at 4:04






                $begingroup$
                Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
                $endgroup$
                – numericalorange
                Feb 3 at 4:04














                $begingroup$
                I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
                $endgroup$
                – numericalorange
                Feb 3 at 4:05




                $begingroup$
                I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
                $endgroup$
                – numericalorange
                Feb 3 at 4:05




                1




                1




                $begingroup$
                So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
                $endgroup$
                – RRL
                Feb 3 at 4:07




                $begingroup$
                So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
                $endgroup$
                – RRL
                Feb 3 at 4:07




                1




                1




                $begingroup$
                ... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
                $endgroup$
                – RRL
                Feb 3 at 4:09




                $begingroup$
                ... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
                $endgroup$
                – RRL
                Feb 3 at 4:09











                2












                $begingroup$

                To begin with, notice that
                begin{align*}
                begin{cases}
                |x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
                |y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
                end{cases}Longrightarrow
                begin{cases}
                displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
                displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
                end{cases}
                end{align*}

                Furthermore, the given expression can be split as the following sum



                begin{align*}
                E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
                end{align*}



                As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  To begin with, notice that
                  begin{align*}
                  begin{cases}
                  |x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
                  |y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
                  end{cases}Longrightarrow
                  begin{cases}
                  displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
                  displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
                  end{cases}
                  end{align*}

                  Furthermore, the given expression can be split as the following sum



                  begin{align*}
                  E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
                  end{align*}



                  As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    To begin with, notice that
                    begin{align*}
                    begin{cases}
                    |x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
                    |y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
                    end{cases}Longrightarrow
                    begin{cases}
                    displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
                    displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
                    end{cases}
                    end{align*}

                    Furthermore, the given expression can be split as the following sum



                    begin{align*}
                    E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
                    end{align*}



                    As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.






                    share|cite|improve this answer









                    $endgroup$



                    To begin with, notice that
                    begin{align*}
                    begin{cases}
                    |x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
                    |y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
                    end{cases}Longrightarrow
                    begin{cases}
                    displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
                    displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
                    end{cases}
                    end{align*}

                    Furthermore, the given expression can be split as the following sum



                    begin{align*}
                    E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
                    end{align*}



                    As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Feb 3 at 3:50









                    APC89APC89

                    2,371720




                    2,371720























                        1












                        $begingroup$

                        You can use polar coordinates:
                        $$x=rcos t; y=r sin t;\
                        lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          You can use polar coordinates:
                          $$x=rcos t; y=r sin t;\
                          lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            You can use polar coordinates:
                            $$x=rcos t; y=r sin t;\
                            lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$






                            share|cite|improve this answer









                            $endgroup$



                            You can use polar coordinates:
                            $$x=rcos t; y=r sin t;\
                            lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 3 at 6:38









                            farruhotafarruhota

                            22.2k2942




                            22.2k2942























                                1












                                $begingroup$

                                You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):




                                • $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$


                                So, you get
                                begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
                                & = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
                                & leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
                                & stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
                                & = & frac{3}{2}sqrt{x^2+y^2} \
                                & stackrel{(x,y)to (0,0)}{longrightarrow} & 0
                                end{eqnarray*}






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):




                                  • $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$


                                  So, you get
                                  begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
                                  & = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
                                  & leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
                                  & stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
                                  & = & frac{3}{2}sqrt{x^2+y^2} \
                                  & stackrel{(x,y)to (0,0)}{longrightarrow} & 0
                                  end{eqnarray*}






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):




                                    • $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$


                                    So, you get
                                    begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
                                    & = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
                                    & leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
                                    & stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
                                    & = & frac{3}{2}sqrt{x^2+y^2} \
                                    & stackrel{(x,y)to (0,0)}{longrightarrow} & 0
                                    end{eqnarray*}






                                    share|cite|improve this answer









                                    $endgroup$



                                    You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):




                                    • $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$


                                    So, you get
                                    begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
                                    & = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
                                    & leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
                                    & stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
                                    & = & frac{3}{2}sqrt{x^2+y^2} \
                                    & stackrel{(x,y)to (0,0)}{longrightarrow} & 0
                                    end{eqnarray*}







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Feb 3 at 7:07









                                    trancelocationtrancelocation

                                    14.1k1829




                                    14.1k1829






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098132%2fprove-that-lim-x-y-to-0-0-fracx2xyy2-sqrtx2y2-0%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        How to fix TextFormField cause rebuild widget in Flutter

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith