Prove that $lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.
$begingroup$
Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.
This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...
$displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$
I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?
limits multivariable-calculus epsilon-delta
$endgroup$
add a comment |
$begingroup$
Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.
This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...
$displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$
I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?
limits multivariable-calculus epsilon-delta
$endgroup$
add a comment |
$begingroup$
Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.
This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...
$displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$
I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?
limits multivariable-calculus epsilon-delta
$endgroup$
Prove that $displaystyle lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=0$.
This has been my rough work so far, but I am not sure how to go further or if I am doing it the wrong way...
$displaystyle|f(x,y)-L|=left |frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}} right | leq frac{|x^{2}+xy+y^{2}|}{big|sqrt{x^{2}+y^{2}}big|}cdot frac{sqrt{x^{2}+y^{2}}}{sqrt{x^{2}+y^{2}}} = frac{big(sqrt{x^{2}+y^{2}}big)|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}$
I wanted the square root on top to help determine what I should set my $delta$ as. Any ideas on how to finish this or do it in a better way?
limits multivariable-calculus epsilon-delta
limits multivariable-calculus epsilon-delta
edited Feb 3 at 6:04


El borito
664216
664216
asked Feb 3 at 3:32
numericalorangenumericalorange
1,949314
1,949314
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint: To finish ...
$$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$
$endgroup$
$begingroup$
Another hint: $(|x| - |y|)^2 geqslant 0$
$endgroup$
– RRL
Feb 3 at 3:48
$begingroup$
Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
$endgroup$
– numericalorange
Feb 3 at 4:04
$begingroup$
I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
$endgroup$
– numericalorange
Feb 3 at 4:05
1
$begingroup$
So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
$endgroup$
– RRL
Feb 3 at 4:07
1
$begingroup$
... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
$endgroup$
– RRL
Feb 3 at 4:09
|
show 2 more comments
$begingroup$
To begin with, notice that
begin{align*}
begin{cases}
|x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
|y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
end{cases}Longrightarrow
begin{cases}
displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
end{cases}
end{align*}
Furthermore, the given expression can be split as the following sum
begin{align*}
E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
end{align*}
As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.
$endgroup$
add a comment |
$begingroup$
You can use polar coordinates:
$$x=rcos t; y=r sin t;\
lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$
$endgroup$
add a comment |
$begingroup$
You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):
- $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$
So, you get
begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
& = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
& leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
& stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
& = & frac{3}{2}sqrt{x^2+y^2} \
& stackrel{(x,y)to (0,0)}{longrightarrow} & 0
end{eqnarray*}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098132%2fprove-that-lim-x-y-to-0-0-fracx2xyy2-sqrtx2y2-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: To finish ...
$$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$
$endgroup$
$begingroup$
Another hint: $(|x| - |y|)^2 geqslant 0$
$endgroup$
– RRL
Feb 3 at 3:48
$begingroup$
Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
$endgroup$
– numericalorange
Feb 3 at 4:04
$begingroup$
I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
$endgroup$
– numericalorange
Feb 3 at 4:05
1
$begingroup$
So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
$endgroup$
– RRL
Feb 3 at 4:07
1
$begingroup$
... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
$endgroup$
– RRL
Feb 3 at 4:09
|
show 2 more comments
$begingroup$
Hint: To finish ...
$$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$
$endgroup$
$begingroup$
Another hint: $(|x| - |y|)^2 geqslant 0$
$endgroup$
– RRL
Feb 3 at 3:48
$begingroup$
Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
$endgroup$
– numericalorange
Feb 3 at 4:04
$begingroup$
I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
$endgroup$
– numericalorange
Feb 3 at 4:05
1
$begingroup$
So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
$endgroup$
– RRL
Feb 3 at 4:07
1
$begingroup$
... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
$endgroup$
– RRL
Feb 3 at 4:09
|
show 2 more comments
$begingroup$
Hint: To finish ...
$$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$
$endgroup$
Hint: To finish ...
$$0 leqslantfrac{(sqrt{x^{2}+y^{2}})|x^{2}+xy+y^{2}|}{|x^{2}+y^{2}|}leqslant sqrt{x^{2}+y^{2}}left(frac{|x^{2}+y^{2}|}{|x^{2}+y^{2}|}+frac{|xy|}{|x^{2}+y^{2}|}right) leqslant sqrt{x^{2}+y^{2}}(ldots)$$
answered Feb 3 at 3:41
RRLRRL
53.7k52574
53.7k52574
$begingroup$
Another hint: $(|x| - |y|)^2 geqslant 0$
$endgroup$
– RRL
Feb 3 at 3:48
$begingroup$
Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
$endgroup$
– numericalorange
Feb 3 at 4:04
$begingroup$
I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
$endgroup$
– numericalorange
Feb 3 at 4:05
1
$begingroup$
So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
$endgroup$
– RRL
Feb 3 at 4:07
1
$begingroup$
... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
$endgroup$
– RRL
Feb 3 at 4:09
|
show 2 more comments
$begingroup$
Another hint: $(|x| - |y|)^2 geqslant 0$
$endgroup$
– RRL
Feb 3 at 3:48
$begingroup$
Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
$endgroup$
– numericalorange
Feb 3 at 4:04
$begingroup$
I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
$endgroup$
– numericalorange
Feb 3 at 4:05
1
$begingroup$
So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
$endgroup$
– RRL
Feb 3 at 4:07
1
$begingroup$
... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
$endgroup$
– RRL
Feb 3 at 4:09
$begingroup$
Another hint: $(|x| - |y|)^2 geqslant 0$
$endgroup$
– RRL
Feb 3 at 3:48
$begingroup$
Another hint: $(|x| - |y|)^2 geqslant 0$
$endgroup$
– RRL
Feb 3 at 3:48
$begingroup$
Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
$endgroup$
– numericalorange
Feb 3 at 4:04
$begingroup$
Thank you, I've been trying to do your hint. I got so far $(sqrt{x^{2}+y^{2}})(1+frac{|x|^{2}-2|xy|+|y|^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(|x|-|y|)^{2}}{|x^{2}+y^{2}|}) leq (sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})$ ...is this correct? I am not sure how to finish this!
$endgroup$
– numericalorange
Feb 3 at 4:04
$begingroup$
I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
$endgroup$
– numericalorange
Feb 3 at 4:05
$begingroup$
I then did: $(sqrt{x^{2}+y^{2}})(1+frac{(x^{2}-y^{2})(x^{2}+y^{2})}{|x^{2}+y^{2}|})leq (sqrt{x^{2}+y^{2}})(1+x^{2}-y^{2})leq (sqrt{x^{2}+y^{2}})(1+x^{2})$...
$endgroup$
– numericalorange
Feb 3 at 4:05
1
1
$begingroup$
So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
$endgroup$
– RRL
Feb 3 at 4:07
$begingroup$
So $(|x| - |y|)^2 geqslant 0 implies x^2 -2|xy| + y^2 geqslant 0 implies x^2 + y^2 geqslant 2|xy| geqslant |xy|$.
$endgroup$
– RRL
Feb 3 at 4:07
1
1
$begingroup$
... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
$endgroup$
– RRL
Feb 3 at 4:09
$begingroup$
... and, of course $frac{|xy|}{x^2 + y^2} leqslant 1$ Thus the bound on the right is $2sqrt{x^2 + y^2}$. Now you proceed with $epsilon- delta$ or just use the squeeze theorem.
$endgroup$
– RRL
Feb 3 at 4:09
|
show 2 more comments
$begingroup$
To begin with, notice that
begin{align*}
begin{cases}
|x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
|y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
end{cases}Longrightarrow
begin{cases}
displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
end{cases}
end{align*}
Furthermore, the given expression can be split as the following sum
begin{align*}
E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
end{align*}
As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.
$endgroup$
add a comment |
$begingroup$
To begin with, notice that
begin{align*}
begin{cases}
|x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
|y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
end{cases}Longrightarrow
begin{cases}
displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
end{cases}
end{align*}
Furthermore, the given expression can be split as the following sum
begin{align*}
E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
end{align*}
As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.
$endgroup$
add a comment |
$begingroup$
To begin with, notice that
begin{align*}
begin{cases}
|x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
|y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
end{cases}Longrightarrow
begin{cases}
displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
end{cases}
end{align*}
Furthermore, the given expression can be split as the following sum
begin{align*}
E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
end{align*}
As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.
$endgroup$
To begin with, notice that
begin{align*}
begin{cases}
|x| = sqrt{x^{2}} leq sqrt{x^{2}+y^{2}}\\
|y| = sqrt{y^{2}} leq sqrt{x^{2}+y^{2}}
end{cases}Longrightarrow
begin{cases}
displaystylefrac{|x|}{sqrt{x^{2}+y^{2}}} leq 1\\
displaystylefrac{|y|}{sqrt{x^{2}+y^{2}}} leq 1
end{cases}
end{align*}
Furthermore, the given expression can be split as the following sum
begin{align*}
E(x,y) = frac{x^{2}+2xy+y^{2}}{sqrt{x^{2}+y^{2}}} = frac{x^{2}}{sqrt{x^{2}+y^{2}}} + frac{2xy}{sqrt{x^{2}+y^{2}}} + frac{y^{2}}{sqrt{x^{2} + y^{2}}}
end{align*}
As a consequence of the squeeze theorem applied to each summand, the given limit tends to zero.
answered Feb 3 at 3:50
APC89APC89
2,371720
2,371720
add a comment |
add a comment |
$begingroup$
You can use polar coordinates:
$$x=rcos t; y=r sin t;\
lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$
$endgroup$
add a comment |
$begingroup$
You can use polar coordinates:
$$x=rcos t; y=r sin t;\
lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$
$endgroup$
add a comment |
$begingroup$
You can use polar coordinates:
$$x=rcos t; y=r sin t;\
lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$
$endgroup$
You can use polar coordinates:
$$x=rcos t; y=r sin t;\
lim_{(x,y)to (0,0)}frac{x^{2}+xy+y^{2}}{sqrt{x^{2}+y^{2}}}=lim_{rto 0}frac{r^{2}(1+frac12sin 2t)}{|r|}=0.$$
answered Feb 3 at 6:38


farruhotafarruhota
22.2k2942
22.2k2942
add a comment |
add a comment |
$begingroup$
You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):
- $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$
So, you get
begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
& = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
& leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
& stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
& = & frac{3}{2}sqrt{x^2+y^2} \
& stackrel{(x,y)to (0,0)}{longrightarrow} & 0
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):
- $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$
So, you get
begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
& = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
& leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
& stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
& = & frac{3}{2}sqrt{x^2+y^2} \
& stackrel{(x,y)to (0,0)}{longrightarrow} & 0
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):
- $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$
So, you get
begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
& = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
& leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
& stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
& = & frac{3}{2}sqrt{x^2+y^2} \
& stackrel{(x,y)to (0,0)}{longrightarrow} & 0
end{eqnarray*}
$endgroup$
You may also procced as follows using GM-QM (inequality between geometric and quadratic mean):
- $sqrt{ab}leq sqrt{frac{a^2+b^2}{2}}$
So, you get
begin{eqnarray*} left| frac{x^2+xy+y^2}{sqrt{x^2+y^2}}right|
& = & left| frac{x^2+y^2}{sqrt{x^2+y^2}} + frac{xy}{sqrt{x^2+y^2}}right| \
& leq & sqrt{x^2+y^2} + frac{|xy|}{sqrt{x^2+y^2}}\
& stackrel{GM-QM}{leq} & sqrt{x^2+y^2} + frac{left(sqrt{frac{x^2+y^2}{2}} right)^2}{sqrt{x^2+y^2}} \
& = & frac{3}{2}sqrt{x^2+y^2} \
& stackrel{(x,y)to (0,0)}{longrightarrow} & 0
end{eqnarray*}
answered Feb 3 at 7:07
trancelocationtrancelocation
14.1k1829
14.1k1829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098132%2fprove-that-lim-x-y-to-0-0-fracx2xyy2-sqrtx2y2-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown