Standard probability space and random variables.











up vote
1
down vote

favorite












Problem :



Let $Omega:=[0,1]$



How to define two independent random variables, which describe coin toss on the above omega?



My idea:



$Omega=[0,1]$



$Sigma = mathbb{B}([0,1])$



Consider the Lebesgue measure



1-reverse coin
2-obverse coin



$X(w)= begin{cases} 0 &text{when } w in [0,1/2) \ 1 &text{when } win [1/2,1) end{cases} $



$Y(w)= begin{cases} 1 &text{when } w in [0,1/4) cup [1/2,3/4) \ 0 &text{when } win [1/4,1/2)cup [3/4,1) end{cases} $



It seems, that $P(X=1)=P(X=0)=P(Y=0)=P(Y=1)=1/2$



And, for example $P(X=0)P(Y=1)=1/4=P(X=0,Y=1)$



What do you think about this?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Problem :



    Let $Omega:=[0,1]$



    How to define two independent random variables, which describe coin toss on the above omega?



    My idea:



    $Omega=[0,1]$



    $Sigma = mathbb{B}([0,1])$



    Consider the Lebesgue measure



    1-reverse coin
    2-obverse coin



    $X(w)= begin{cases} 0 &text{when } w in [0,1/2) \ 1 &text{when } win [1/2,1) end{cases} $



    $Y(w)= begin{cases} 1 &text{when } w in [0,1/4) cup [1/2,3/4) \ 0 &text{when } win [1/4,1/2)cup [3/4,1) end{cases} $



    It seems, that $P(X=1)=P(X=0)=P(Y=0)=P(Y=1)=1/2$



    And, for example $P(X=0)P(Y=1)=1/4=P(X=0,Y=1)$



    What do you think about this?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Problem :



      Let $Omega:=[0,1]$



      How to define two independent random variables, which describe coin toss on the above omega?



      My idea:



      $Omega=[0,1]$



      $Sigma = mathbb{B}([0,1])$



      Consider the Lebesgue measure



      1-reverse coin
      2-obverse coin



      $X(w)= begin{cases} 0 &text{when } w in [0,1/2) \ 1 &text{when } win [1/2,1) end{cases} $



      $Y(w)= begin{cases} 1 &text{when } w in [0,1/4) cup [1/2,3/4) \ 0 &text{when } win [1/4,1/2)cup [3/4,1) end{cases} $



      It seems, that $P(X=1)=P(X=0)=P(Y=0)=P(Y=1)=1/2$



      And, for example $P(X=0)P(Y=1)=1/4=P(X=0,Y=1)$



      What do you think about this?










      share|cite|improve this question















      Problem :



      Let $Omega:=[0,1]$



      How to define two independent random variables, which describe coin toss on the above omega?



      My idea:



      $Omega=[0,1]$



      $Sigma = mathbb{B}([0,1])$



      Consider the Lebesgue measure



      1-reverse coin
      2-obverse coin



      $X(w)= begin{cases} 0 &text{when } w in [0,1/2) \ 1 &text{when } win [1/2,1) end{cases} $



      $Y(w)= begin{cases} 1 &text{when } w in [0,1/4) cup [1/2,3/4) \ 0 &text{when } win [1/4,1/2)cup [3/4,1) end{cases} $



      It seems, that $P(X=1)=P(X=0)=P(Y=0)=P(Y=1)=1/2$



      And, for example $P(X=0)P(Y=1)=1/4=P(X=0,Y=1)$



      What do you think about this?







      probability-theory random-variables






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday

























      asked yesterday









      PabloZ392

      1356




      1356






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          Yes, your idea works just fine.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005112%2fstandard-probability-space-and-random-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            Yes, your idea works just fine.






            share|cite|improve this answer

























              up vote
              1
              down vote













              Yes, your idea works just fine.






              share|cite|improve this answer























                up vote
                1
                down vote










                up vote
                1
                down vote









                Yes, your idea works just fine.






                share|cite|improve this answer












                Yes, your idea works just fine.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                Nate Eldredge

                61.4k679166




                61.4k679166






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005112%2fstandard-probability-space-and-random-variables%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]