Is “being decomposable” preserved under taking a subspace?
$begingroup$
Let $V$ be a vector space over some field, and $W le V$ a vector subspace. Let $1<k<dim V$ be an integer.
Suppose $omega in bigwedge^k W$ is decomposable as an element in $bigwedge^k V$. Is it decomposable as an element in $bigwedge^k W$?
multilinear-algebra exterior-algebra grassmannian tensor-decomposition
$endgroup$
add a comment |
$begingroup$
Let $V$ be a vector space over some field, and $W le V$ a vector subspace. Let $1<k<dim V$ be an integer.
Suppose $omega in bigwedge^k W$ is decomposable as an element in $bigwedge^k V$. Is it decomposable as an element in $bigwedge^k W$?
multilinear-algebra exterior-algebra grassmannian tensor-decomposition
$endgroup$
add a comment |
$begingroup$
Let $V$ be a vector space over some field, and $W le V$ a vector subspace. Let $1<k<dim V$ be an integer.
Suppose $omega in bigwedge^k W$ is decomposable as an element in $bigwedge^k V$. Is it decomposable as an element in $bigwedge^k W$?
multilinear-algebra exterior-algebra grassmannian tensor-decomposition
$endgroup$
Let $V$ be a vector space over some field, and $W le V$ a vector subspace. Let $1<k<dim V$ be an integer.
Suppose $omega in bigwedge^k W$ is decomposable as an element in $bigwedge^k V$. Is it decomposable as an element in $bigwedge^k W$?
multilinear-algebra exterior-algebra grassmannian tensor-decomposition
multilinear-algebra exterior-algebra grassmannian tensor-decomposition
asked Feb 3 at 11:53


Asaf ShacharAsaf Shachar
5,79931145
5,79931145
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The answer is positive. Let $w_i$ be a basis for $W$. Write $omega=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k}$. Let $v in V setminus W$. Since $w_i,v$ are linearly independent, we can complete them into a basis of $V$. This implies that $omega wedge v=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k} wedge v neq 0$.
By assumption, $omega in bigwedge^k W$ is decomposable in $bigwedge^k V$, i.e. $omega=v_1 wedge dots wedge v_k$, for some $v_i in V$. Since $v_1 wedge dots wedge v_k wedge v=omega wedge v neq 0$, we deduce that $v notin {v_1,dots,v_k}$. Since $v in V setminus W$ was arbitrary, we have proved that $V setminus W=W^c subseteq {v_1,dots,v_k}^c$, so $ {v_1,dots,v_k} subseteq W$, so $omega=v_1 wedge dots wedge v_k$ is decomposable in $bigwedge^k W$.
An alternative proof:
$omega$ is decomposable in $bigwedge^k V$, if and only if $V_{omega}={ v in V , | , v wedge omega=0}$ is $k$-dimensioal.
Now, $v in V setminus W Rightarrow v wedge omega neq 0 Rightarrow v notin V_{omega}$, i.e. $W^c subseteq V_{omega}^c$. Thus,
so $V_{omega} subseteq W$, hence
$$ W_{omega}=V_{omega} cap W=V_{omega}$$
is also $k$-dimensional, so $omega$ is decomposable in $bigwedge^k W$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098483%2fis-being-decomposable-preserved-under-taking-a-subspace%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer is positive. Let $w_i$ be a basis for $W$. Write $omega=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k}$. Let $v in V setminus W$. Since $w_i,v$ are linearly independent, we can complete them into a basis of $V$. This implies that $omega wedge v=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k} wedge v neq 0$.
By assumption, $omega in bigwedge^k W$ is decomposable in $bigwedge^k V$, i.e. $omega=v_1 wedge dots wedge v_k$, for some $v_i in V$. Since $v_1 wedge dots wedge v_k wedge v=omega wedge v neq 0$, we deduce that $v notin {v_1,dots,v_k}$. Since $v in V setminus W$ was arbitrary, we have proved that $V setminus W=W^c subseteq {v_1,dots,v_k}^c$, so $ {v_1,dots,v_k} subseteq W$, so $omega=v_1 wedge dots wedge v_k$ is decomposable in $bigwedge^k W$.
An alternative proof:
$omega$ is decomposable in $bigwedge^k V$, if and only if $V_{omega}={ v in V , | , v wedge omega=0}$ is $k$-dimensioal.
Now, $v in V setminus W Rightarrow v wedge omega neq 0 Rightarrow v notin V_{omega}$, i.e. $W^c subseteq V_{omega}^c$. Thus,
so $V_{omega} subseteq W$, hence
$$ W_{omega}=V_{omega} cap W=V_{omega}$$
is also $k$-dimensional, so $omega$ is decomposable in $bigwedge^k W$.
$endgroup$
add a comment |
$begingroup$
The answer is positive. Let $w_i$ be a basis for $W$. Write $omega=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k}$. Let $v in V setminus W$. Since $w_i,v$ are linearly independent, we can complete them into a basis of $V$. This implies that $omega wedge v=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k} wedge v neq 0$.
By assumption, $omega in bigwedge^k W$ is decomposable in $bigwedge^k V$, i.e. $omega=v_1 wedge dots wedge v_k$, for some $v_i in V$. Since $v_1 wedge dots wedge v_k wedge v=omega wedge v neq 0$, we deduce that $v notin {v_1,dots,v_k}$. Since $v in V setminus W$ was arbitrary, we have proved that $V setminus W=W^c subseteq {v_1,dots,v_k}^c$, so $ {v_1,dots,v_k} subseteq W$, so $omega=v_1 wedge dots wedge v_k$ is decomposable in $bigwedge^k W$.
An alternative proof:
$omega$ is decomposable in $bigwedge^k V$, if and only if $V_{omega}={ v in V , | , v wedge omega=0}$ is $k$-dimensioal.
Now, $v in V setminus W Rightarrow v wedge omega neq 0 Rightarrow v notin V_{omega}$, i.e. $W^c subseteq V_{omega}^c$. Thus,
so $V_{omega} subseteq W$, hence
$$ W_{omega}=V_{omega} cap W=V_{omega}$$
is also $k$-dimensional, so $omega$ is decomposable in $bigwedge^k W$.
$endgroup$
add a comment |
$begingroup$
The answer is positive. Let $w_i$ be a basis for $W$. Write $omega=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k}$. Let $v in V setminus W$. Since $w_i,v$ are linearly independent, we can complete them into a basis of $V$. This implies that $omega wedge v=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k} wedge v neq 0$.
By assumption, $omega in bigwedge^k W$ is decomposable in $bigwedge^k V$, i.e. $omega=v_1 wedge dots wedge v_k$, for some $v_i in V$. Since $v_1 wedge dots wedge v_k wedge v=omega wedge v neq 0$, we deduce that $v notin {v_1,dots,v_k}$. Since $v in V setminus W$ was arbitrary, we have proved that $V setminus W=W^c subseteq {v_1,dots,v_k}^c$, so $ {v_1,dots,v_k} subseteq W$, so $omega=v_1 wedge dots wedge v_k$ is decomposable in $bigwedge^k W$.
An alternative proof:
$omega$ is decomposable in $bigwedge^k V$, if and only if $V_{omega}={ v in V , | , v wedge omega=0}$ is $k$-dimensioal.
Now, $v in V setminus W Rightarrow v wedge omega neq 0 Rightarrow v notin V_{omega}$, i.e. $W^c subseteq V_{omega}^c$. Thus,
so $V_{omega} subseteq W$, hence
$$ W_{omega}=V_{omega} cap W=V_{omega}$$
is also $k$-dimensional, so $omega$ is decomposable in $bigwedge^k W$.
$endgroup$
The answer is positive. Let $w_i$ be a basis for $W$. Write $omega=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k}$. Let $v in V setminus W$. Since $w_i,v$ are linearly independent, we can complete them into a basis of $V$. This implies that $omega wedge v=sum_{1 le i_1 <dots<i_k le dim W)} w_{i_1} wedge ldots wedge w_{i_k} wedge v neq 0$.
By assumption, $omega in bigwedge^k W$ is decomposable in $bigwedge^k V$, i.e. $omega=v_1 wedge dots wedge v_k$, for some $v_i in V$. Since $v_1 wedge dots wedge v_k wedge v=omega wedge v neq 0$, we deduce that $v notin {v_1,dots,v_k}$. Since $v in V setminus W$ was arbitrary, we have proved that $V setminus W=W^c subseteq {v_1,dots,v_k}^c$, so $ {v_1,dots,v_k} subseteq W$, so $omega=v_1 wedge dots wedge v_k$ is decomposable in $bigwedge^k W$.
An alternative proof:
$omega$ is decomposable in $bigwedge^k V$, if and only if $V_{omega}={ v in V , | , v wedge omega=0}$ is $k$-dimensioal.
Now, $v in V setminus W Rightarrow v wedge omega neq 0 Rightarrow v notin V_{omega}$, i.e. $W^c subseteq V_{omega}^c$. Thus,
so $V_{omega} subseteq W$, hence
$$ W_{omega}=V_{omega} cap W=V_{omega}$$
is also $k$-dimensional, so $omega$ is decomposable in $bigwedge^k W$.
edited Feb 4 at 9:21
answered Feb 3 at 11:53


Asaf ShacharAsaf Shachar
5,79931145
5,79931145
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098483%2fis-being-decomposable-preserved-under-taking-a-subspace%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown