How to write masked MSE loss in Keras?
up vote
1
down vote
favorite
I was trying to write masked MSE loss:
def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn
My model:
def MobileNet_v1():
# MobileNet with dense layer on top
# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)
x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)
# -------------------------------------------------------
model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)
model.summary()
import sys
sys.exit()
return model
But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given
Also a question how batch generator output should look like in this case.
python tensorflow keras deep-learning mse
add a comment |
up vote
1
down vote
favorite
I was trying to write masked MSE loss:
def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn
My model:
def MobileNet_v1():
# MobileNet with dense layer on top
# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)
x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)
# -------------------------------------------------------
model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)
model.summary()
import sys
sys.exit()
return model
But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given
Also a question how batch generator output should look like in this case.
python tensorflow keras deep-learning mse
Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I was trying to write masked MSE loss:
def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn
My model:
def MobileNet_v1():
# MobileNet with dense layer on top
# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)
x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)
# -------------------------------------------------------
model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)
model.summary()
import sys
sys.exit()
return model
But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given
Also a question how batch generator output should look like in this case.
python tensorflow keras deep-learning mse
I was trying to write masked MSE loss:
def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn
My model:
def MobileNet_v1():
# MobileNet with dense layer on top
# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)
x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)
# -------------------------------------------------------
model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)
model.summary()
import sys
sys.exit()
return model
But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given
Also a question how batch generator output should look like in this case.
python tensorflow keras deep-learning mse
python tensorflow keras deep-learning mse
edited yesterday
Milo Lu
1,48011326
1,48011326
asked yesterday
mrgloom
4,881954124
4,881954124
Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday
add a comment |
Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday
Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday
Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53366667%2fhow-to-write-masked-mse-loss-in-keras%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday