How to write masked MSE loss in Keras?











up vote
1
down vote

favorite












I was trying to write masked MSE loss:



def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn


My model:



def MobileNet_v1():
# MobileNet with dense layer on top

# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)

x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)

# -------------------------------------------------------

model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)

model.summary()
import sys
sys.exit()

return model


But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given



Also a question how batch generator output should look like in this case.










share|improve this question
























  • Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
    – Or Dinari
    yesterday















up vote
1
down vote

favorite












I was trying to write masked MSE loss:



def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn


My model:



def MobileNet_v1():
# MobileNet with dense layer on top

# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)

x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)

# -------------------------------------------------------

model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)

model.summary()
import sys
sys.exit()

return model


But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given



Also a question how batch generator output should look like in this case.










share|improve this question
























  • Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
    – Or Dinari
    yesterday













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I was trying to write masked MSE loss:



def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn


My model:



def MobileNet_v1():
# MobileNet with dense layer on top

# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)

x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)

# -------------------------------------------------------

model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)

model.summary()
import sys
sys.exit()

return model


But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given



Also a question how batch generator output should look like in this case.










share|improve this question















I was trying to write masked MSE loss:



def mae_loss_masked(mask):
def loss_fn(y_true, y_pred):
abs_vec = tf.multiply(tf.abs(y_pred-y_true), mask)
loss = tf.reduce_mean(abs_vec)
return loss
return loss_fn


My model:



def MobileNet_v1():
# MobileNet with dense layer on top

# Keras 2.1.6
mobilenet = MobileNet(input_shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS),
alpha=1.0,
depth_multiplier=1,
include_top=False,
weights='imagenet'
)

x = Flatten()(mobilenet.output)
x = Dropout(0.5)(x)
x = Dense(config.N_LANDMARKS * 2, activation='linear')(x)

# -------------------------------------------------------

model = Model(inputs=mobilenet.input, outputs=x)
optimizer = Adadelta()
model.compile(optimizer=optimizer, loss=mae_loss_masked)

model.summary()
import sys
sys.exit()

return model


But it give an error:
TypeError: mae_loss_masked() takes 1 positional argument but 2 were given



Also a question how batch generator output should look like in this case.







python tensorflow keras deep-learning mse






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited yesterday









Milo Lu

1,48011326




1,48011326










asked yesterday









mrgloom

4,881954124




4,881954124












  • Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
    – Or Dinari
    yesterday


















  • Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
    – Or Dinari
    yesterday
















Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday




Your loss function takes 1 argument, while you are actually giving it 2. using mae_loss_masked(some_mask) will get you the actual loss function you need: stackoverflow.com/questions/46858016/… , batch should still be (x,y) , or optionally (x,y, weights)
– Or Dinari
yesterday

















active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53366667%2fhow-to-write-masked-mse-loss-in-keras%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53366667%2fhow-to-write-masked-mse-loss-in-keras%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]