Apache Flink Kafka Integration Partition Seperation
I need to implement below data flow. I have one kafka topic which has 9 partitions. I can read this topic with 9 parallelism level. I have also 3 node Flink cluster. Each of nodes of this cluster has 24 task slot.
First of all, I want to spread my kafka like, each server has 3 partition like below. Order is not matter, I only transform kafka message and send it DB.
Second thing is, I want to increase my parallelism degree while saving NoSQL DB. If I increase my parallelism 48, since sending DB is IO operation, it does not consume CPU, I want to be sure, When Flink rebalance my message, my message will stay in the same server.
Is there any advice for me?
apache-kafka apache-flink
add a comment |
I need to implement below data flow. I have one kafka topic which has 9 partitions. I can read this topic with 9 parallelism level. I have also 3 node Flink cluster. Each of nodes of this cluster has 24 task slot.
First of all, I want to spread my kafka like, each server has 3 partition like below. Order is not matter, I only transform kafka message and send it DB.
Second thing is, I want to increase my parallelism degree while saving NoSQL DB. If I increase my parallelism 48, since sending DB is IO operation, it does not consume CPU, I want to be sure, When Flink rebalance my message, my message will stay in the same server.
Is there any advice for me?
apache-kafka apache-flink
add a comment |
I need to implement below data flow. I have one kafka topic which has 9 partitions. I can read this topic with 9 parallelism level. I have also 3 node Flink cluster. Each of nodes of this cluster has 24 task slot.
First of all, I want to spread my kafka like, each server has 3 partition like below. Order is not matter, I only transform kafka message and send it DB.
Second thing is, I want to increase my parallelism degree while saving NoSQL DB. If I increase my parallelism 48, since sending DB is IO operation, it does not consume CPU, I want to be sure, When Flink rebalance my message, my message will stay in the same server.
Is there any advice for me?
apache-kafka apache-flink
I need to implement below data flow. I have one kafka topic which has 9 partitions. I can read this topic with 9 parallelism level. I have also 3 node Flink cluster. Each of nodes of this cluster has 24 task slot.
First of all, I want to spread my kafka like, each server has 3 partition like below. Order is not matter, I only transform kafka message and send it DB.
Second thing is, I want to increase my parallelism degree while saving NoSQL DB. If I increase my parallelism 48, since sending DB is IO operation, it does not consume CPU, I want to be sure, When Flink rebalance my message, my message will stay in the same server.
Is there any advice for me?
apache-kafka apache-flink
apache-kafka apache-flink
asked Nov 19 '18 at 13:19
Yılmaz
7019
7019
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
If you want to spread you Kafka readers across all 3 nodes, I would recommend to start them with 3 slots each and set the parallelism of the Kafka source to 9.
The problem is that at the moment it is not possible to control how tasks are placed if there are more slots available than the required parallelism. This means if you have fewer sources than slots, then it might happen that all sources will be deployed to one machine, leaving the other machines empty (source-wise).
Being able to spread out tasks across all available machines is a feature which the community is currently working on.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53375513%2fapache-flink-kafka-integration-partition-seperation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
If you want to spread you Kafka readers across all 3 nodes, I would recommend to start them with 3 slots each and set the parallelism of the Kafka source to 9.
The problem is that at the moment it is not possible to control how tasks are placed if there are more slots available than the required parallelism. This means if you have fewer sources than slots, then it might happen that all sources will be deployed to one machine, leaving the other machines empty (source-wise).
Being able to spread out tasks across all available machines is a feature which the community is currently working on.
add a comment |
If you want to spread you Kafka readers across all 3 nodes, I would recommend to start them with 3 slots each and set the parallelism of the Kafka source to 9.
The problem is that at the moment it is not possible to control how tasks are placed if there are more slots available than the required parallelism. This means if you have fewer sources than slots, then it might happen that all sources will be deployed to one machine, leaving the other machines empty (source-wise).
Being able to spread out tasks across all available machines is a feature which the community is currently working on.
add a comment |
If you want to spread you Kafka readers across all 3 nodes, I would recommend to start them with 3 slots each and set the parallelism of the Kafka source to 9.
The problem is that at the moment it is not possible to control how tasks are placed if there are more slots available than the required parallelism. This means if you have fewer sources than slots, then it might happen that all sources will be deployed to one machine, leaving the other machines empty (source-wise).
Being able to spread out tasks across all available machines is a feature which the community is currently working on.
If you want to spread you Kafka readers across all 3 nodes, I would recommend to start them with 3 slots each and set the parallelism of the Kafka source to 9.
The problem is that at the moment it is not possible to control how tasks are placed if there are more slots available than the required parallelism. This means if you have fewer sources than slots, then it might happen that all sources will be deployed to one machine, leaving the other machines empty (source-wise).
Being able to spread out tasks across all available machines is a feature which the community is currently working on.
edited Nov 21 '18 at 8:51


David Anderson
4,95921120
4,95921120
answered Nov 20 '18 at 15:45


Till Rohrmann
9,02111035
9,02111035
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53375513%2fapache-flink-kafka-integration-partition-seperation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown