Find radius of convergence of the power series.
$begingroup$
Find the radius of convergence of power series $$ sum_{n=0}^{infty} 2^{2n} x^{n^2}$$
A)1
B)2
C) 4
D)1/4
I try to apply ratio and root test ( Cauchy–Hadamard theorem ) .but they don't seem promising as I was left with $|x^n|$ .
But I find solution by trial and error . I substitute 1 for x , series diverges , so 2,4 cannot be radius of convergence, and I substitute 1/2 the series converges .so the answer is 1.
Please help me how to proceed in problem like this.
sequences-and-series convergence power-series divergent-series absolute-convergence
$endgroup$
add a comment |
$begingroup$
Find the radius of convergence of power series $$ sum_{n=0}^{infty} 2^{2n} x^{n^2}$$
A)1
B)2
C) 4
D)1/4
I try to apply ratio and root test ( Cauchy–Hadamard theorem ) .but they don't seem promising as I was left with $|x^n|$ .
But I find solution by trial and error . I substitute 1 for x , series diverges , so 2,4 cannot be radius of convergence, and I substitute 1/2 the series converges .so the answer is 1.
Please help me how to proceed in problem like this.
sequences-and-series convergence power-series divergent-series absolute-convergence
$endgroup$
add a comment |
$begingroup$
Find the radius of convergence of power series $$ sum_{n=0}^{infty} 2^{2n} x^{n^2}$$
A)1
B)2
C) 4
D)1/4
I try to apply ratio and root test ( Cauchy–Hadamard theorem ) .but they don't seem promising as I was left with $|x^n|$ .
But I find solution by trial and error . I substitute 1 for x , series diverges , so 2,4 cannot be radius of convergence, and I substitute 1/2 the series converges .so the answer is 1.
Please help me how to proceed in problem like this.
sequences-and-series convergence power-series divergent-series absolute-convergence
$endgroup$
Find the radius of convergence of power series $$ sum_{n=0}^{infty} 2^{2n} x^{n^2}$$
A)1
B)2
C) 4
D)1/4
I try to apply ratio and root test ( Cauchy–Hadamard theorem ) .but they don't seem promising as I was left with $|x^n|$ .
But I find solution by trial and error . I substitute 1 for x , series diverges , so 2,4 cannot be radius of convergence, and I substitute 1/2 the series converges .so the answer is 1.
Please help me how to proceed in problem like this.
sequences-and-series convergence power-series divergent-series absolute-convergence
sequences-and-series convergence power-series divergent-series absolute-convergence
asked Jan 1 at 15:08
Cloud JRCloud JR
863517
863517
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Since$$leftlvertfrac{2^{2(n+1)}x^{(n+1)^2}}{2^{2n}x^{n^2}}rightrvert=2^2lvert xrvert^{2n+1},$$the series converges absolutely if $lvert xrvert<1$ and diverges if $lvert xrvert>1$. So, the radius of convergence is $1$.
$endgroup$
add a comment |
$begingroup$
Hint: what does $x^n$ do as $n to infty$ if $|x| < 1$? If $|x| > 1$?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058559%2ffind-radius-of-convergence-of-the-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since$$leftlvertfrac{2^{2(n+1)}x^{(n+1)^2}}{2^{2n}x^{n^2}}rightrvert=2^2lvert xrvert^{2n+1},$$the series converges absolutely if $lvert xrvert<1$ and diverges if $lvert xrvert>1$. So, the radius of convergence is $1$.
$endgroup$
add a comment |
$begingroup$
Since$$leftlvertfrac{2^{2(n+1)}x^{(n+1)^2}}{2^{2n}x^{n^2}}rightrvert=2^2lvert xrvert^{2n+1},$$the series converges absolutely if $lvert xrvert<1$ and diverges if $lvert xrvert>1$. So, the radius of convergence is $1$.
$endgroup$
add a comment |
$begingroup$
Since$$leftlvertfrac{2^{2(n+1)}x^{(n+1)^2}}{2^{2n}x^{n^2}}rightrvert=2^2lvert xrvert^{2n+1},$$the series converges absolutely if $lvert xrvert<1$ and diverges if $lvert xrvert>1$. So, the radius of convergence is $1$.
$endgroup$
Since$$leftlvertfrac{2^{2(n+1)}x^{(n+1)^2}}{2^{2n}x^{n^2}}rightrvert=2^2lvert xrvert^{2n+1},$$the series converges absolutely if $lvert xrvert<1$ and diverges if $lvert xrvert>1$. So, the radius of convergence is $1$.
answered Jan 1 at 15:15


José Carlos SantosJosé Carlos Santos
153k22123225
153k22123225
add a comment |
add a comment |
$begingroup$
Hint: what does $x^n$ do as $n to infty$ if $|x| < 1$? If $|x| > 1$?
$endgroup$
add a comment |
$begingroup$
Hint: what does $x^n$ do as $n to infty$ if $|x| < 1$? If $|x| > 1$?
$endgroup$
add a comment |
$begingroup$
Hint: what does $x^n$ do as $n to infty$ if $|x| < 1$? If $|x| > 1$?
$endgroup$
Hint: what does $x^n$ do as $n to infty$ if $|x| < 1$? If $|x| > 1$?
answered Jan 1 at 15:13
Robert IsraelRobert Israel
319k23209459
319k23209459
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058559%2ffind-radius-of-convergence-of-the-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown