Maximizing $f$ in $mathbb{R}^3$
$begingroup$
Find the domain and the maximum value that the function
$$f(x,y,z)=frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}$$
may attain in its domain.
I have found the domain of the function to be $mathbb{R^3backslashmathbf{0}}$. To maximize I differentiated in terms of $x,y,z$ having
$$f_x=frac{-2 x y-3 x z+y^2+z^2}{left(x^2+y^2+z^2right)^{3/2}},quad f_y=frac{2 x^2-x y+z (2 z-3 y)}{left(x^2+y^2+z^2right)^{3/2}},quad f_z=frac{3 left(x^2+y^2right)-z (x+2 y)}{left(x^2+y^2+z^2right)^{3/2}}$$
But to solve the system $f_x=0,f_y=0$ and $f_z=0$ is rather hard. What are the plausible values of $x,y,z$?
multivariable-calculus optimization partial-derivative maxima-minima cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
Find the domain and the maximum value that the function
$$f(x,y,z)=frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}$$
may attain in its domain.
I have found the domain of the function to be $mathbb{R^3backslashmathbf{0}}$. To maximize I differentiated in terms of $x,y,z$ having
$$f_x=frac{-2 x y-3 x z+y^2+z^2}{left(x^2+y^2+z^2right)^{3/2}},quad f_y=frac{2 x^2-x y+z (2 z-3 y)}{left(x^2+y^2+z^2right)^{3/2}},quad f_z=frac{3 left(x^2+y^2right)-z (x+2 y)}{left(x^2+y^2+z^2right)^{3/2}}$$
But to solve the system $f_x=0,f_y=0$ and $f_z=0$ is rather hard. What are the plausible values of $x,y,z$?
multivariable-calculus optimization partial-derivative maxima-minima cauchy-schwarz-inequality
$endgroup$
$begingroup$
The easy way is to use CS here. However if you want to try to solve it the calculus way notice that the function is homogenous (you can scale the parameters with the same number and retain the same function value) so you are free to assume $x=1$ in the system $f_x=f_y=f_z = 0$. This leaves you with a simpler system to solve.
$endgroup$
– Winther
Jan 8 at 0:46
add a comment |
$begingroup$
Find the domain and the maximum value that the function
$$f(x,y,z)=frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}$$
may attain in its domain.
I have found the domain of the function to be $mathbb{R^3backslashmathbf{0}}$. To maximize I differentiated in terms of $x,y,z$ having
$$f_x=frac{-2 x y-3 x z+y^2+z^2}{left(x^2+y^2+z^2right)^{3/2}},quad f_y=frac{2 x^2-x y+z (2 z-3 y)}{left(x^2+y^2+z^2right)^{3/2}},quad f_z=frac{3 left(x^2+y^2right)-z (x+2 y)}{left(x^2+y^2+z^2right)^{3/2}}$$
But to solve the system $f_x=0,f_y=0$ and $f_z=0$ is rather hard. What are the plausible values of $x,y,z$?
multivariable-calculus optimization partial-derivative maxima-minima cauchy-schwarz-inequality
$endgroup$
Find the domain and the maximum value that the function
$$f(x,y,z)=frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}$$
may attain in its domain.
I have found the domain of the function to be $mathbb{R^3backslashmathbf{0}}$. To maximize I differentiated in terms of $x,y,z$ having
$$f_x=frac{-2 x y-3 x z+y^2+z^2}{left(x^2+y^2+z^2right)^{3/2}},quad f_y=frac{2 x^2-x y+z (2 z-3 y)}{left(x^2+y^2+z^2right)^{3/2}},quad f_z=frac{3 left(x^2+y^2right)-z (x+2 y)}{left(x^2+y^2+z^2right)^{3/2}}$$
But to solve the system $f_x=0,f_y=0$ and $f_z=0$ is rather hard. What are the plausible values of $x,y,z$?
multivariable-calculus optimization partial-derivative maxima-minima cauchy-schwarz-inequality
multivariable-calculus optimization partial-derivative maxima-minima cauchy-schwarz-inequality
edited Jan 8 at 10:29
Michael Rozenberg
100k1591192
100k1591192
asked Jan 8 at 0:30
DisPxyDisPxy
235
235
$begingroup$
The easy way is to use CS here. However if you want to try to solve it the calculus way notice that the function is homogenous (you can scale the parameters with the same number and retain the same function value) so you are free to assume $x=1$ in the system $f_x=f_y=f_z = 0$. This leaves you with a simpler system to solve.
$endgroup$
– Winther
Jan 8 at 0:46
add a comment |
$begingroup$
The easy way is to use CS here. However if you want to try to solve it the calculus way notice that the function is homogenous (you can scale the parameters with the same number and retain the same function value) so you are free to assume $x=1$ in the system $f_x=f_y=f_z = 0$. This leaves you with a simpler system to solve.
$endgroup$
– Winther
Jan 8 at 0:46
$begingroup$
The easy way is to use CS here. However if you want to try to solve it the calculus way notice that the function is homogenous (you can scale the parameters with the same number and retain the same function value) so you are free to assume $x=1$ in the system $f_x=f_y=f_z = 0$. This leaves you with a simpler system to solve.
$endgroup$
– Winther
Jan 8 at 0:46
$begingroup$
The easy way is to use CS here. However if you want to try to solve it the calculus way notice that the function is homogenous (you can scale the parameters with the same number and retain the same function value) so you are free to assume $x=1$ in the system $f_x=f_y=f_z = 0$. This leaves you with a simpler system to solve.
$endgroup$
– Winther
Jan 8 at 0:46
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Consider the vectors $,vec{u}=(x,y,z),$ and $,vec{v}=(1,2,3)$, then we can write
$$frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}=frac{vec{u}boldsymbol{cdot}vec{v}}{Vertvec{u}Vert}=frac{Vertvec{u}VertVertvec{v}Vertcos(alpha)}{Vertvec{u}Vert}=Vertvec{v}Vertcos(alpha)=sqrt{1^2+2^2+3^2}cos(alpha
)=sqrt{14}cos(alpha)$$
When is the last expression maximized? When $alpha=kpi,,kinmathbb{Z}$, thus the maximum value of $f$ is $sqrt{14}$.
$endgroup$
1
$begingroup$
I think it should be $2kpi$
$endgroup$
– DisPxy
Jan 8 at 10:07
add a comment |
$begingroup$
By C-S $$(x^2+y^2+z^2)(1^2+2^2+3^2)geq(x+2y+3z)^2,$$
which gives
$$-sqrt{14}leqfrac{x+2y+3z}{sqrt{x^2+y^2+z^2}}leqsqrt{14}.$$
The equality occurs for $(x,y,z)||(1,2,3),$ which gives that we got a maximal value and the minimal value.
$endgroup$
$begingroup$
What does C-S mean?
$endgroup$
– DisPxy
Jan 8 at 0:46
1
$begingroup$
It's Cauchy-Schwarz inequality.
$endgroup$
– Michael Rozenberg
Jan 8 at 0:47
add a comment |
$begingroup$
Consider the line
$x = t, y = 2t, z = 3t$
Along this line.
$f(t,2t,3t) = frac {14 t}{sqrt{14 t^2}} = sqrt {14}$
let's find some orthogonal vectors.
$mathbf u = (1,2,3)\
mathbf v = (2,-1,0)\
mathbf w = (0,3,-2)$
Any point in $mathbb R^3$ is some linear combination
$c_1mathbf u + c_2mathbf v+ c_3mathbf w$
$f(c_1mathbf u + c_2mathbf v+ c_3mathbf w) = frac {14c_1}{sqrt{14c_1^2 + 5c_2^2 + 13c_3^2}}\
|f|le sqrt 14 text{ sgn}(c_1)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065678%2fmaximizing-f-in-mathbbr3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider the vectors $,vec{u}=(x,y,z),$ and $,vec{v}=(1,2,3)$, then we can write
$$frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}=frac{vec{u}boldsymbol{cdot}vec{v}}{Vertvec{u}Vert}=frac{Vertvec{u}VertVertvec{v}Vertcos(alpha)}{Vertvec{u}Vert}=Vertvec{v}Vertcos(alpha)=sqrt{1^2+2^2+3^2}cos(alpha
)=sqrt{14}cos(alpha)$$
When is the last expression maximized? When $alpha=kpi,,kinmathbb{Z}$, thus the maximum value of $f$ is $sqrt{14}$.
$endgroup$
1
$begingroup$
I think it should be $2kpi$
$endgroup$
– DisPxy
Jan 8 at 10:07
add a comment |
$begingroup$
Consider the vectors $,vec{u}=(x,y,z),$ and $,vec{v}=(1,2,3)$, then we can write
$$frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}=frac{vec{u}boldsymbol{cdot}vec{v}}{Vertvec{u}Vert}=frac{Vertvec{u}VertVertvec{v}Vertcos(alpha)}{Vertvec{u}Vert}=Vertvec{v}Vertcos(alpha)=sqrt{1^2+2^2+3^2}cos(alpha
)=sqrt{14}cos(alpha)$$
When is the last expression maximized? When $alpha=kpi,,kinmathbb{Z}$, thus the maximum value of $f$ is $sqrt{14}$.
$endgroup$
1
$begingroup$
I think it should be $2kpi$
$endgroup$
– DisPxy
Jan 8 at 10:07
add a comment |
$begingroup$
Consider the vectors $,vec{u}=(x,y,z),$ and $,vec{v}=(1,2,3)$, then we can write
$$frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}=frac{vec{u}boldsymbol{cdot}vec{v}}{Vertvec{u}Vert}=frac{Vertvec{u}VertVertvec{v}Vertcos(alpha)}{Vertvec{u}Vert}=Vertvec{v}Vertcos(alpha)=sqrt{1^2+2^2+3^2}cos(alpha
)=sqrt{14}cos(alpha)$$
When is the last expression maximized? When $alpha=kpi,,kinmathbb{Z}$, thus the maximum value of $f$ is $sqrt{14}$.
$endgroup$
Consider the vectors $,vec{u}=(x,y,z),$ and $,vec{v}=(1,2,3)$, then we can write
$$frac{x+2y+3z}{sqrt{x^2+y^2+z^2}}=frac{vec{u}boldsymbol{cdot}vec{v}}{Vertvec{u}Vert}=frac{Vertvec{u}VertVertvec{v}Vertcos(alpha)}{Vertvec{u}Vert}=Vertvec{v}Vertcos(alpha)=sqrt{1^2+2^2+3^2}cos(alpha
)=sqrt{14}cos(alpha)$$
When is the last expression maximized? When $alpha=kpi,,kinmathbb{Z}$, thus the maximum value of $f$ is $sqrt{14}$.
answered Jan 8 at 0:39
Denis28Denis28
884218
884218
1
$begingroup$
I think it should be $2kpi$
$endgroup$
– DisPxy
Jan 8 at 10:07
add a comment |
1
$begingroup$
I think it should be $2kpi$
$endgroup$
– DisPxy
Jan 8 at 10:07
1
1
$begingroup$
I think it should be $2kpi$
$endgroup$
– DisPxy
Jan 8 at 10:07
$begingroup$
I think it should be $2kpi$
$endgroup$
– DisPxy
Jan 8 at 10:07
add a comment |
$begingroup$
By C-S $$(x^2+y^2+z^2)(1^2+2^2+3^2)geq(x+2y+3z)^2,$$
which gives
$$-sqrt{14}leqfrac{x+2y+3z}{sqrt{x^2+y^2+z^2}}leqsqrt{14}.$$
The equality occurs for $(x,y,z)||(1,2,3),$ which gives that we got a maximal value and the minimal value.
$endgroup$
$begingroup$
What does C-S mean?
$endgroup$
– DisPxy
Jan 8 at 0:46
1
$begingroup$
It's Cauchy-Schwarz inequality.
$endgroup$
– Michael Rozenberg
Jan 8 at 0:47
add a comment |
$begingroup$
By C-S $$(x^2+y^2+z^2)(1^2+2^2+3^2)geq(x+2y+3z)^2,$$
which gives
$$-sqrt{14}leqfrac{x+2y+3z}{sqrt{x^2+y^2+z^2}}leqsqrt{14}.$$
The equality occurs for $(x,y,z)||(1,2,3),$ which gives that we got a maximal value and the minimal value.
$endgroup$
$begingroup$
What does C-S mean?
$endgroup$
– DisPxy
Jan 8 at 0:46
1
$begingroup$
It's Cauchy-Schwarz inequality.
$endgroup$
– Michael Rozenberg
Jan 8 at 0:47
add a comment |
$begingroup$
By C-S $$(x^2+y^2+z^2)(1^2+2^2+3^2)geq(x+2y+3z)^2,$$
which gives
$$-sqrt{14}leqfrac{x+2y+3z}{sqrt{x^2+y^2+z^2}}leqsqrt{14}.$$
The equality occurs for $(x,y,z)||(1,2,3),$ which gives that we got a maximal value and the minimal value.
$endgroup$
By C-S $$(x^2+y^2+z^2)(1^2+2^2+3^2)geq(x+2y+3z)^2,$$
which gives
$$-sqrt{14}leqfrac{x+2y+3z}{sqrt{x^2+y^2+z^2}}leqsqrt{14}.$$
The equality occurs for $(x,y,z)||(1,2,3),$ which gives that we got a maximal value and the minimal value.
answered Jan 8 at 0:35
Michael RozenbergMichael Rozenberg
100k1591192
100k1591192
$begingroup$
What does C-S mean?
$endgroup$
– DisPxy
Jan 8 at 0:46
1
$begingroup$
It's Cauchy-Schwarz inequality.
$endgroup$
– Michael Rozenberg
Jan 8 at 0:47
add a comment |
$begingroup$
What does C-S mean?
$endgroup$
– DisPxy
Jan 8 at 0:46
1
$begingroup$
It's Cauchy-Schwarz inequality.
$endgroup$
– Michael Rozenberg
Jan 8 at 0:47
$begingroup$
What does C-S mean?
$endgroup$
– DisPxy
Jan 8 at 0:46
$begingroup$
What does C-S mean?
$endgroup$
– DisPxy
Jan 8 at 0:46
1
1
$begingroup$
It's Cauchy-Schwarz inequality.
$endgroup$
– Michael Rozenberg
Jan 8 at 0:47
$begingroup$
It's Cauchy-Schwarz inequality.
$endgroup$
– Michael Rozenberg
Jan 8 at 0:47
add a comment |
$begingroup$
Consider the line
$x = t, y = 2t, z = 3t$
Along this line.
$f(t,2t,3t) = frac {14 t}{sqrt{14 t^2}} = sqrt {14}$
let's find some orthogonal vectors.
$mathbf u = (1,2,3)\
mathbf v = (2,-1,0)\
mathbf w = (0,3,-2)$
Any point in $mathbb R^3$ is some linear combination
$c_1mathbf u + c_2mathbf v+ c_3mathbf w$
$f(c_1mathbf u + c_2mathbf v+ c_3mathbf w) = frac {14c_1}{sqrt{14c_1^2 + 5c_2^2 + 13c_3^2}}\
|f|le sqrt 14 text{ sgn}(c_1)$
$endgroup$
add a comment |
$begingroup$
Consider the line
$x = t, y = 2t, z = 3t$
Along this line.
$f(t,2t,3t) = frac {14 t}{sqrt{14 t^2}} = sqrt {14}$
let's find some orthogonal vectors.
$mathbf u = (1,2,3)\
mathbf v = (2,-1,0)\
mathbf w = (0,3,-2)$
Any point in $mathbb R^3$ is some linear combination
$c_1mathbf u + c_2mathbf v+ c_3mathbf w$
$f(c_1mathbf u + c_2mathbf v+ c_3mathbf w) = frac {14c_1}{sqrt{14c_1^2 + 5c_2^2 + 13c_3^2}}\
|f|le sqrt 14 text{ sgn}(c_1)$
$endgroup$
add a comment |
$begingroup$
Consider the line
$x = t, y = 2t, z = 3t$
Along this line.
$f(t,2t,3t) = frac {14 t}{sqrt{14 t^2}} = sqrt {14}$
let's find some orthogonal vectors.
$mathbf u = (1,2,3)\
mathbf v = (2,-1,0)\
mathbf w = (0,3,-2)$
Any point in $mathbb R^3$ is some linear combination
$c_1mathbf u + c_2mathbf v+ c_3mathbf w$
$f(c_1mathbf u + c_2mathbf v+ c_3mathbf w) = frac {14c_1}{sqrt{14c_1^2 + 5c_2^2 + 13c_3^2}}\
|f|le sqrt 14 text{ sgn}(c_1)$
$endgroup$
Consider the line
$x = t, y = 2t, z = 3t$
Along this line.
$f(t,2t,3t) = frac {14 t}{sqrt{14 t^2}} = sqrt {14}$
let's find some orthogonal vectors.
$mathbf u = (1,2,3)\
mathbf v = (2,-1,0)\
mathbf w = (0,3,-2)$
Any point in $mathbb R^3$ is some linear combination
$c_1mathbf u + c_2mathbf v+ c_3mathbf w$
$f(c_1mathbf u + c_2mathbf v+ c_3mathbf w) = frac {14c_1}{sqrt{14c_1^2 + 5c_2^2 + 13c_3^2}}\
|f|le sqrt 14 text{ sgn}(c_1)$
answered Jan 8 at 1:57
Doug MDoug M
44.6k31854
44.6k31854
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065678%2fmaximizing-f-in-mathbbr3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The easy way is to use CS here. However if you want to try to solve it the calculus way notice that the function is homogenous (you can scale the parameters with the same number and retain the same function value) so you are free to assume $x=1$ in the system $f_x=f_y=f_z = 0$. This leaves you with a simpler system to solve.
$endgroup$
– Winther
Jan 8 at 0:46