Minimal polynomial?












0












$begingroup$


Let $K$ a field, $p,nin mathbb{N}$, $Bin mathcal{M}_p({K})$ and let denote $S_B={Xin mathcal{M}_p(K) mid X^n=B}$.



If $Xin S_B$, I have to prove that $mu_X$ (the minimal polynomial of $X$) divides $mu_B(xi^n)$.



If $Xin S_B$ then we can deduce that $X^n-B=0$ but after I do not know how to link this with $mu_X$ or $mu_B$...



Thanks in advance !










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $K$ a field, $p,nin mathbb{N}$, $Bin mathcal{M}_p({K})$ and let denote $S_B={Xin mathcal{M}_p(K) mid X^n=B}$.



    If $Xin S_B$, I have to prove that $mu_X$ (the minimal polynomial of $X$) divides $mu_B(xi^n)$.



    If $Xin S_B$ then we can deduce that $X^n-B=0$ but after I do not know how to link this with $mu_X$ or $mu_B$...



    Thanks in advance !










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $K$ a field, $p,nin mathbb{N}$, $Bin mathcal{M}_p({K})$ and let denote $S_B={Xin mathcal{M}_p(K) mid X^n=B}$.



      If $Xin S_B$, I have to prove that $mu_X$ (the minimal polynomial of $X$) divides $mu_B(xi^n)$.



      If $Xin S_B$ then we can deduce that $X^n-B=0$ but after I do not know how to link this with $mu_X$ or $mu_B$...



      Thanks in advance !










      share|cite|improve this question











      $endgroup$




      Let $K$ a field, $p,nin mathbb{N}$, $Bin mathcal{M}_p({K})$ and let denote $S_B={Xin mathcal{M}_p(K) mid X^n=B}$.



      If $Xin S_B$, I have to prove that $mu_X$ (the minimal polynomial of $X$) divides $mu_B(xi^n)$.



      If $Xin S_B$ then we can deduce that $X^n-B=0$ but after I do not know how to link this with $mu_X$ or $mu_B$...



      Thanks in advance !







      linear-algebra matrices polynomials minimal-polynomials






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 19:09









      Omnomnomnom

      128k791182




      128k791182










      asked Jan 11 at 19:07









      MamanMaman

      1,189722




      1,189722






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Hint: It suffices to note that if $X in S_B$, then $mu_B(X^n) = 0$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Does it come from the fact that $mu_B(B)=0$ by definition ?
            $endgroup$
            – Maman
            Jan 11 at 19:15










          • $begingroup$
            @Maman exactly.
            $endgroup$
            – Omnomnomnom
            Jan 11 at 19:16










          • $begingroup$
            Then I think we have : $mu_{X^n}(X^N)=0$ ? What is the link with $xi^n$ ?
            $endgroup$
            – Maman
            Jan 12 at 21:27












          • $begingroup$
            If $p(A)=0$, then the minimal polynomial of $A$ divides $p$.
            $endgroup$
            – Omnomnomnom
            Jan 13 at 1:49










          • $begingroup$
            @Maman $xi$ is used to emphasize the polynomial itself. That is, $p(xi) = mu_B(xi^n)$ is a polynomial satisfying $p(X) = 0$
            $endgroup$
            – Omnomnomnom
            Jan 13 at 16:54











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070228%2fminimal-polynomial%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Hint: It suffices to note that if $X in S_B$, then $mu_B(X^n) = 0$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Does it come from the fact that $mu_B(B)=0$ by definition ?
            $endgroup$
            – Maman
            Jan 11 at 19:15










          • $begingroup$
            @Maman exactly.
            $endgroup$
            – Omnomnomnom
            Jan 11 at 19:16










          • $begingroup$
            Then I think we have : $mu_{X^n}(X^N)=0$ ? What is the link with $xi^n$ ?
            $endgroup$
            – Maman
            Jan 12 at 21:27












          • $begingroup$
            If $p(A)=0$, then the minimal polynomial of $A$ divides $p$.
            $endgroup$
            – Omnomnomnom
            Jan 13 at 1:49










          • $begingroup$
            @Maman $xi$ is used to emphasize the polynomial itself. That is, $p(xi) = mu_B(xi^n)$ is a polynomial satisfying $p(X) = 0$
            $endgroup$
            – Omnomnomnom
            Jan 13 at 16:54
















          2












          $begingroup$

          Hint: It suffices to note that if $X in S_B$, then $mu_B(X^n) = 0$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Does it come from the fact that $mu_B(B)=0$ by definition ?
            $endgroup$
            – Maman
            Jan 11 at 19:15










          • $begingroup$
            @Maman exactly.
            $endgroup$
            – Omnomnomnom
            Jan 11 at 19:16










          • $begingroup$
            Then I think we have : $mu_{X^n}(X^N)=0$ ? What is the link with $xi^n$ ?
            $endgroup$
            – Maman
            Jan 12 at 21:27












          • $begingroup$
            If $p(A)=0$, then the minimal polynomial of $A$ divides $p$.
            $endgroup$
            – Omnomnomnom
            Jan 13 at 1:49










          • $begingroup$
            @Maman $xi$ is used to emphasize the polynomial itself. That is, $p(xi) = mu_B(xi^n)$ is a polynomial satisfying $p(X) = 0$
            $endgroup$
            – Omnomnomnom
            Jan 13 at 16:54














          2












          2








          2





          $begingroup$

          Hint: It suffices to note that if $X in S_B$, then $mu_B(X^n) = 0$






          share|cite|improve this answer









          $endgroup$



          Hint: It suffices to note that if $X in S_B$, then $mu_B(X^n) = 0$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 19:11









          OmnomnomnomOmnomnomnom

          128k791182




          128k791182












          • $begingroup$
            Does it come from the fact that $mu_B(B)=0$ by definition ?
            $endgroup$
            – Maman
            Jan 11 at 19:15










          • $begingroup$
            @Maman exactly.
            $endgroup$
            – Omnomnomnom
            Jan 11 at 19:16










          • $begingroup$
            Then I think we have : $mu_{X^n}(X^N)=0$ ? What is the link with $xi^n$ ?
            $endgroup$
            – Maman
            Jan 12 at 21:27












          • $begingroup$
            If $p(A)=0$, then the minimal polynomial of $A$ divides $p$.
            $endgroup$
            – Omnomnomnom
            Jan 13 at 1:49










          • $begingroup$
            @Maman $xi$ is used to emphasize the polynomial itself. That is, $p(xi) = mu_B(xi^n)$ is a polynomial satisfying $p(X) = 0$
            $endgroup$
            – Omnomnomnom
            Jan 13 at 16:54


















          • $begingroup$
            Does it come from the fact that $mu_B(B)=0$ by definition ?
            $endgroup$
            – Maman
            Jan 11 at 19:15










          • $begingroup$
            @Maman exactly.
            $endgroup$
            – Omnomnomnom
            Jan 11 at 19:16










          • $begingroup$
            Then I think we have : $mu_{X^n}(X^N)=0$ ? What is the link with $xi^n$ ?
            $endgroup$
            – Maman
            Jan 12 at 21:27












          • $begingroup$
            If $p(A)=0$, then the minimal polynomial of $A$ divides $p$.
            $endgroup$
            – Omnomnomnom
            Jan 13 at 1:49










          • $begingroup$
            @Maman $xi$ is used to emphasize the polynomial itself. That is, $p(xi) = mu_B(xi^n)$ is a polynomial satisfying $p(X) = 0$
            $endgroup$
            – Omnomnomnom
            Jan 13 at 16:54
















          $begingroup$
          Does it come from the fact that $mu_B(B)=0$ by definition ?
          $endgroup$
          – Maman
          Jan 11 at 19:15




          $begingroup$
          Does it come from the fact that $mu_B(B)=0$ by definition ?
          $endgroup$
          – Maman
          Jan 11 at 19:15












          $begingroup$
          @Maman exactly.
          $endgroup$
          – Omnomnomnom
          Jan 11 at 19:16




          $begingroup$
          @Maman exactly.
          $endgroup$
          – Omnomnomnom
          Jan 11 at 19:16












          $begingroup$
          Then I think we have : $mu_{X^n}(X^N)=0$ ? What is the link with $xi^n$ ?
          $endgroup$
          – Maman
          Jan 12 at 21:27






          $begingroup$
          Then I think we have : $mu_{X^n}(X^N)=0$ ? What is the link with $xi^n$ ?
          $endgroup$
          – Maman
          Jan 12 at 21:27














          $begingroup$
          If $p(A)=0$, then the minimal polynomial of $A$ divides $p$.
          $endgroup$
          – Omnomnomnom
          Jan 13 at 1:49




          $begingroup$
          If $p(A)=0$, then the minimal polynomial of $A$ divides $p$.
          $endgroup$
          – Omnomnomnom
          Jan 13 at 1:49












          $begingroup$
          @Maman $xi$ is used to emphasize the polynomial itself. That is, $p(xi) = mu_B(xi^n)$ is a polynomial satisfying $p(X) = 0$
          $endgroup$
          – Omnomnomnom
          Jan 13 at 16:54




          $begingroup$
          @Maman $xi$ is used to emphasize the polynomial itself. That is, $p(xi) = mu_B(xi^n)$ is a polynomial satisfying $p(X) = 0$
          $endgroup$
          – Omnomnomnom
          Jan 13 at 16:54


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070228%2fminimal-polynomial%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement