Prove whether $xyz =1$ implies that $yzx=1$ or $yxz=1$.












3












$begingroup$


Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.



My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.



By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.



However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.



I don't understand where my proof went wrong.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
    $endgroup$
    – Adrian Keister
    Jan 11 at 14:57










  • $begingroup$
    Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
    $endgroup$
    – Adrian Keister
    Jan 11 at 15:00
















3












$begingroup$


Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.



My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.



By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.



However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.



I don't understand where my proof went wrong.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
    $endgroup$
    – Adrian Keister
    Jan 11 at 14:57










  • $begingroup$
    Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
    $endgroup$
    – Adrian Keister
    Jan 11 at 15:00














3












3








3





$begingroup$


Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.



My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.



By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.



However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.



I don't understand where my proof went wrong.










share|cite|improve this question









$endgroup$




Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.



My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.



By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.



However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.



I don't understand where my proof went wrong.







abstract-algebra group-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 11 at 14:53









LazarusLazarus

1127




1127








  • 3




    $begingroup$
    I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
    $endgroup$
    – Adrian Keister
    Jan 11 at 14:57










  • $begingroup$
    Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
    $endgroup$
    – Adrian Keister
    Jan 11 at 15:00














  • 3




    $begingroup$
    I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
    $endgroup$
    – Adrian Keister
    Jan 11 at 14:57










  • $begingroup$
    Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
    $endgroup$
    – Adrian Keister
    Jan 11 at 15:00








3




3




$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57




$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57












$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00




$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00










5 Answers
5






active

oldest

votes


















4












$begingroup$

You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.






        share|cite|improve this answer









        $endgroup$





















          0












          $begingroup$

          Here $xyz=1$ gives



          $$begin{align}
          x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
          &iff yzx=x^{-1}x \
          & iff yzx=1,
          end{align}$$



          which gives



          $$begin{align}
          y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
          & iff zxy=y^{-1}y \
          &iff zxy=1.
          end{align}$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069921%2fprove-whether-xyz-1-implies-that-yzx-1-or-yxz-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$






            share|cite|improve this answer











            $endgroup$


















              4












              $begingroup$

              You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$






              share|cite|improve this answer











              $endgroup$
















                4












                4








                4





                $begingroup$

                You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$






                share|cite|improve this answer











                $endgroup$



                You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 11 at 15:00









                pie314271

                2,114819




                2,114819










                answered Jan 11 at 14:59









                Ben WBen W

                2,276615




                2,276615























                    1












                    $begingroup$

                    Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.






                    share|cite|improve this answer









                    $endgroup$


















                      1












                      $begingroup$

                      Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.






                      share|cite|improve this answer









                      $endgroup$
















                        1












                        1








                        1





                        $begingroup$

                        Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.






                        share|cite|improve this answer









                        $endgroup$



                        Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Jan 11 at 14:55









                        WuestenfuxWuestenfux

                        4,5141413




                        4,5141413























                            1












                            $begingroup$

                            For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.






                            share|cite|improve this answer









                            $endgroup$


















                              1












                              $begingroup$

                              For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.






                              share|cite|improve this answer









                              $endgroup$
















                                1












                                1








                                1





                                $begingroup$

                                For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.






                                share|cite|improve this answer









                                $endgroup$



                                For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Jan 11 at 15:03









                                Michael HoppeMichael Hoppe

                                11k31836




                                11k31836























                                    0












                                    $begingroup$

                                    Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.






                                    share|cite|improve this answer









                                    $endgroup$


















                                      0












                                      $begingroup$

                                      Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.






                                      share|cite|improve this answer









                                      $endgroup$
















                                        0












                                        0








                                        0





                                        $begingroup$

                                        Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.






                                        share|cite|improve this answer









                                        $endgroup$



                                        Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Jan 11 at 15:01









                                        Mostafa AyazMostafa Ayaz

                                        15.5k3939




                                        15.5k3939























                                            0












                                            $begingroup$

                                            Here $xyz=1$ gives



                                            $$begin{align}
                                            x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
                                            &iff yzx=x^{-1}x \
                                            & iff yzx=1,
                                            end{align}$$



                                            which gives



                                            $$begin{align}
                                            y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
                                            & iff zxy=y^{-1}y \
                                            &iff zxy=1.
                                            end{align}$$






                                            share|cite|improve this answer











                                            $endgroup$


















                                              0












                                              $begingroup$

                                              Here $xyz=1$ gives



                                              $$begin{align}
                                              x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
                                              &iff yzx=x^{-1}x \
                                              & iff yzx=1,
                                              end{align}$$



                                              which gives



                                              $$begin{align}
                                              y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
                                              & iff zxy=y^{-1}y \
                                              &iff zxy=1.
                                              end{align}$$






                                              share|cite|improve this answer











                                              $endgroup$
















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Here $xyz=1$ gives



                                                $$begin{align}
                                                x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
                                                &iff yzx=x^{-1}x \
                                                & iff yzx=1,
                                                end{align}$$



                                                which gives



                                                $$begin{align}
                                                y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
                                                & iff zxy=y^{-1}y \
                                                &iff zxy=1.
                                                end{align}$$






                                                share|cite|improve this answer











                                                $endgroup$



                                                Here $xyz=1$ gives



                                                $$begin{align}
                                                x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
                                                &iff yzx=x^{-1}x \
                                                & iff yzx=1,
                                                end{align}$$



                                                which gives



                                                $$begin{align}
                                                y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
                                                & iff zxy=y^{-1}y \
                                                &iff zxy=1.
                                                end{align}$$







                                                share|cite|improve this answer














                                                share|cite|improve this answer



                                                share|cite|improve this answer








                                                edited Jan 11 at 19:25









                                                Shaun

                                                9,083113683




                                                9,083113683










                                                answered Jan 11 at 16:43









                                                Michael RozenbergMichael Rozenberg

                                                102k1791195




                                                102k1791195






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069921%2fprove-whether-xyz-1-implies-that-yzx-1-or-yxz-1%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    MongoDB - Not Authorized To Execute Command

                                                    How to fix TextFormField cause rebuild widget in Flutter

                                                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith