Prove whether $xyz =1$ implies that $yzx=1$ or $yxz=1$.
$begingroup$
Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.
My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.
By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.
However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.
I don't understand where my proof went wrong.
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.
My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.
By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.
However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.
I don't understand where my proof went wrong.
abstract-algebra group-theory
$endgroup$
3
$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57
$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00
add a comment |
$begingroup$
Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.
My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.
By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.
However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.
I don't understand where my proof went wrong.
abstract-algebra group-theory
$endgroup$
Let $x,y,z$ be elements of a group $G$ and $xyz=1$. I am trying to prove whether this implies $yzx=1$ or $yxz=1$.
My proof goes as follows: Let $x^{-1}$ denote the inverse of $x$, then $xx^{-1} = 1 = x(yz)$. By the cancellation property of groups, $x^{-1}= yz$. This implies $(yz)x = x^{-1}x = 1$. Therefore $xyz = 1 implies yzx = 1$.
By applying the same argument to $y(zx) = 1$ one can prove that $xyz = 1 implies yxz =1$.
However while trying to my proof online I stumbled upon the following counterexample for the proposition $xyz = 1 implies yxz =1$. If we take $G$ to be the group of $2times 2$ matrices and let $x = left( begin{array} { c c } { 1 } & { 2 } \ { 0 } & { 2 } end{array} right)$, $y = left( begin{array} { l l } { 0 } & { 1 } \ { 2 } & { 1 } end{array} right)$ and $z = left( begin{array} { c c } { - 1 / 2 } & { 3 / 4 } \ { 1 } & { - 1 } end{array} right)$. Then $x y z = left( begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right) = 1$ but $y x z = left( begin{array} { c c } { 2 } & { - 2 } \ { 5 } & { - 9 / 2 } end{array} right) neq 1$.
I don't understand where my proof went wrong.
abstract-algebra group-theory
abstract-algebra group-theory
asked Jan 11 at 14:53
LazarusLazarus
1127
1127
3
$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57
$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00
add a comment |
3
$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57
$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00
3
3
$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57
$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57
$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00
$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$
$endgroup$
add a comment |
$begingroup$
Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.
$endgroup$
add a comment |
$begingroup$
For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.
$endgroup$
add a comment |
$begingroup$
Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.
$endgroup$
add a comment |
$begingroup$
Here $xyz=1$ gives
$$begin{align}
x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
&iff yzx=x^{-1}x \
& iff yzx=1,
end{align}$$
which gives
$$begin{align}
y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
& iff zxy=y^{-1}y \
&iff zxy=1.
end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069921%2fprove-whether-xyz-1-implies-that-yzx-1-or-yxz-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$
$endgroup$
add a comment |
$begingroup$
You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$
$endgroup$
add a comment |
$begingroup$
You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$
$endgroup$
You just mixed up some letters. $xyz=1$ implies $yzx=1$ and $zxy=1,$ not $yxz=1.$
edited Jan 11 at 15:00


pie314271
2,114819
2,114819
answered Jan 11 at 14:59
Ben WBen W
2,276615
2,276615
add a comment |
add a comment |
$begingroup$
Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.
$endgroup$
add a comment |
$begingroup$
Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.
$endgroup$
add a comment |
$begingroup$
Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.
$endgroup$
Well, if $xyz=1$, then by multiplying with the inverse of $x$ from the left, $yz=x^{-1}$. Now multiply the equation with $x$ from the right. Then $yzx=1$.
answered Jan 11 at 14:55
WuestenfuxWuestenfux
4,5141413
4,5141413
add a comment |
add a comment |
$begingroup$
For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.
$endgroup$
add a comment |
$begingroup$
For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.
$endgroup$
add a comment |
$begingroup$
For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.
$endgroup$
For any group we have $aa^{-1}=a^{-1}a=1$. From $xyz=1$ we know that $(xy)z=1$, from where the first claim follows.
answered Jan 11 at 15:03
Michael HoppeMichael Hoppe
11k31836
11k31836
add a comment |
add a comment |
$begingroup$
Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.
$endgroup$
add a comment |
$begingroup$
Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.
$endgroup$
add a comment |
$begingroup$
Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.
$endgroup$
Since $G$ is a group then if $xin G$ , there exists $x^{-1}in G$ such that $$xcdot x^{-1}=x^{-1}cdot x=ein G$$having this result and exploiting the other properties of group we obtain $$x^{-1}cdot (xyz)=(x^{-1}cdot x)cdot yz=ecdot yz=yz=x^{-1}cdot e=x^{-1}$$therefore $$yzcdot x=yzx=x^{-1}cdot x=1$$and the statement has been proved.
answered Jan 11 at 15:01


Mostafa AyazMostafa Ayaz
15.5k3939
15.5k3939
add a comment |
add a comment |
$begingroup$
Here $xyz=1$ gives
$$begin{align}
x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
&iff yzx=x^{-1}x \
& iff yzx=1,
end{align}$$
which gives
$$begin{align}
y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
& iff zxy=y^{-1}y \
&iff zxy=1.
end{align}$$
$endgroup$
add a comment |
$begingroup$
Here $xyz=1$ gives
$$begin{align}
x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
&iff yzx=x^{-1}x \
& iff yzx=1,
end{align}$$
which gives
$$begin{align}
y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
& iff zxy=y^{-1}y \
&iff zxy=1.
end{align}$$
$endgroup$
add a comment |
$begingroup$
Here $xyz=1$ gives
$$begin{align}
x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
&iff yzx=x^{-1}x \
& iff yzx=1,
end{align}$$
which gives
$$begin{align}
y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
& iff zxy=y^{-1}y \
&iff zxy=1.
end{align}$$
$endgroup$
Here $xyz=1$ gives
$$begin{align}
x^{-1}xyz=x^{-1}1 & iff yz=x^{-1} \
&iff yzx=x^{-1}x \
& iff yzx=1,
end{align}$$
which gives
$$begin{align}
y^{-1}yzx=y^{-1}1 & iff zx=y^{-1} \
& iff zxy=y^{-1}y \
&iff zxy=1.
end{align}$$
edited Jan 11 at 19:25
Shaun
9,083113683
9,083113683
answered Jan 11 at 16:43
Michael RozenbergMichael Rozenberg
102k1791195
102k1791195
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069921%2fprove-whether-xyz-1-implies-that-yzx-1-or-yxz-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
I think you need to double-check your "By applying the same argument..." line. Are you sure it works out?
$endgroup$
– Adrian Keister
Jan 11 at 14:57
$begingroup$
Intuitively, this argument shows you can "peel off" a variable on one side, and slap it on the other.
$endgroup$
– Adrian Keister
Jan 11 at 15:00