Every ordinal $alpha>0$ can be expressed uniquely as $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot...











up vote
2
down vote

favorite













Every ordinal $alpha>0$ can be expressed uniquely as



$$alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$$



where $beta_1>beta_2>cdots>beta_n$ and $k_1>0,k_2>0,cdots,k_n>0$ are finite.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Existence



Assume that $xi$ can be expressed as normal form for all $xi<alpha$.



Let $beta=max{xiinrm Ordmidomega^xilealpha}$. Then there is $delta$ and $rho<omega^beta$ such that $alpha=omega^betacdotdelta+rho$. Since $rho<omega^beta$, $rho<alpha$ and thus $delta>0$. I claim that $delta$ is finite. If not, $delta$ is infinite and thus $deltageomega$. Then $omega^{beta+1}=omega^betacdotomegaleomega^betacdotdeltalealpha$ and thus $omega^{beta+1}lealpha$. This contradicts the maximality of $beta$. Thus $delta$ is finite. Let $beta_1=beta$ and $k_1=delta$. If $rho=0$, then $alpha=omega^{beta_1}cdot k_1$. If $rho>0$, then $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ for some $beta_2>cdots>beta_n$ and finite $k_2,cdots,k_n>0$ by inductive hypothesis. We have $omega^{beta_2}lerho<omega^{beta_1}$, then $beta_2<beta_1$. As a result, $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ as desired.



We observed that $beta<gammaimpliesforall kinomega:omega^betacdot k<omega^gamma$. This is because $omega^betacdot k<omega^betacdotomega=omega^{beta+1}leomega^gamma$. It follows that if $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ is in normal form and $beta_1<gamma$, then $alpha<omega^gamma$.



Uniqueness



Assume that the normal form of $xi$ is unique for all $xi<alpha$.



Let $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n=omega^{gamma_1}cdot l_1+omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. The previous observation implies that $beta_1=gamma_1$. Let $delta=omega^{beta_1}=omega^{gamma_1}$, $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$, and $sigma=omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. Then $alpha=deltacdot k_1+rho=deltacdot l_1+sigma$ where $rho<delta$ and $sigma<delta$. Thus $k_1=l_1$ and $rho=sigma$. By inductive hypothesis, the normal form of $rho$ is unique and thus $m=n$, $beta_2=gamma_2,cdots,beta_n=gamma_n, k_2=l_2,cdots,k_n=l_m$. It follows that the normal form of $alpha$ is unique.










share|cite|improve this question






















  • I think that you must to argue why $beta$ is a maximum.
    – Gödel
    20 hours ago










  • Hi @Gödel! I proved that such $beta$ exists before and take that for granted.
    – Le Anh Dung
    13 hours ago

















up vote
2
down vote

favorite













Every ordinal $alpha>0$ can be expressed uniquely as



$$alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$$



where $beta_1>beta_2>cdots>beta_n$ and $k_1>0,k_2>0,cdots,k_n>0$ are finite.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Existence



Assume that $xi$ can be expressed as normal form for all $xi<alpha$.



Let $beta=max{xiinrm Ordmidomega^xilealpha}$. Then there is $delta$ and $rho<omega^beta$ such that $alpha=omega^betacdotdelta+rho$. Since $rho<omega^beta$, $rho<alpha$ and thus $delta>0$. I claim that $delta$ is finite. If not, $delta$ is infinite and thus $deltageomega$. Then $omega^{beta+1}=omega^betacdotomegaleomega^betacdotdeltalealpha$ and thus $omega^{beta+1}lealpha$. This contradicts the maximality of $beta$. Thus $delta$ is finite. Let $beta_1=beta$ and $k_1=delta$. If $rho=0$, then $alpha=omega^{beta_1}cdot k_1$. If $rho>0$, then $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ for some $beta_2>cdots>beta_n$ and finite $k_2,cdots,k_n>0$ by inductive hypothesis. We have $omega^{beta_2}lerho<omega^{beta_1}$, then $beta_2<beta_1$. As a result, $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ as desired.



We observed that $beta<gammaimpliesforall kinomega:omega^betacdot k<omega^gamma$. This is because $omega^betacdot k<omega^betacdotomega=omega^{beta+1}leomega^gamma$. It follows that if $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ is in normal form and $beta_1<gamma$, then $alpha<omega^gamma$.



Uniqueness



Assume that the normal form of $xi$ is unique for all $xi<alpha$.



Let $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n=omega^{gamma_1}cdot l_1+omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. The previous observation implies that $beta_1=gamma_1$. Let $delta=omega^{beta_1}=omega^{gamma_1}$, $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$, and $sigma=omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. Then $alpha=deltacdot k_1+rho=deltacdot l_1+sigma$ where $rho<delta$ and $sigma<delta$. Thus $k_1=l_1$ and $rho=sigma$. By inductive hypothesis, the normal form of $rho$ is unique and thus $m=n$, $beta_2=gamma_2,cdots,beta_n=gamma_n, k_2=l_2,cdots,k_n=l_m$. It follows that the normal form of $alpha$ is unique.










share|cite|improve this question






















  • I think that you must to argue why $beta$ is a maximum.
    – Gödel
    20 hours ago










  • Hi @Gödel! I proved that such $beta$ exists before and take that for granted.
    – Le Anh Dung
    13 hours ago















up vote
2
down vote

favorite









up vote
2
down vote

favorite












Every ordinal $alpha>0$ can be expressed uniquely as



$$alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$$



where $beta_1>beta_2>cdots>beta_n$ and $k_1>0,k_2>0,cdots,k_n>0$ are finite.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Existence



Assume that $xi$ can be expressed as normal form for all $xi<alpha$.



Let $beta=max{xiinrm Ordmidomega^xilealpha}$. Then there is $delta$ and $rho<omega^beta$ such that $alpha=omega^betacdotdelta+rho$. Since $rho<omega^beta$, $rho<alpha$ and thus $delta>0$. I claim that $delta$ is finite. If not, $delta$ is infinite and thus $deltageomega$. Then $omega^{beta+1}=omega^betacdotomegaleomega^betacdotdeltalealpha$ and thus $omega^{beta+1}lealpha$. This contradicts the maximality of $beta$. Thus $delta$ is finite. Let $beta_1=beta$ and $k_1=delta$. If $rho=0$, then $alpha=omega^{beta_1}cdot k_1$. If $rho>0$, then $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ for some $beta_2>cdots>beta_n$ and finite $k_2,cdots,k_n>0$ by inductive hypothesis. We have $omega^{beta_2}lerho<omega^{beta_1}$, then $beta_2<beta_1$. As a result, $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ as desired.



We observed that $beta<gammaimpliesforall kinomega:omega^betacdot k<omega^gamma$. This is because $omega^betacdot k<omega^betacdotomega=omega^{beta+1}leomega^gamma$. It follows that if $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ is in normal form and $beta_1<gamma$, then $alpha<omega^gamma$.



Uniqueness



Assume that the normal form of $xi$ is unique for all $xi<alpha$.



Let $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n=omega^{gamma_1}cdot l_1+omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. The previous observation implies that $beta_1=gamma_1$. Let $delta=omega^{beta_1}=omega^{gamma_1}$, $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$, and $sigma=omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. Then $alpha=deltacdot k_1+rho=deltacdot l_1+sigma$ where $rho<delta$ and $sigma<delta$. Thus $k_1=l_1$ and $rho=sigma$. By inductive hypothesis, the normal form of $rho$ is unique and thus $m=n$, $beta_2=gamma_2,cdots,beta_n=gamma_n, k_2=l_2,cdots,k_n=l_m$. It follows that the normal form of $alpha$ is unique.










share|cite|improve this question














Every ordinal $alpha>0$ can be expressed uniquely as



$$alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$$



where $beta_1>beta_2>cdots>beta_n$ and $k_1>0,k_2>0,cdots,k_n>0$ are finite.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Existence



Assume that $xi$ can be expressed as normal form for all $xi<alpha$.



Let $beta=max{xiinrm Ordmidomega^xilealpha}$. Then there is $delta$ and $rho<omega^beta$ such that $alpha=omega^betacdotdelta+rho$. Since $rho<omega^beta$, $rho<alpha$ and thus $delta>0$. I claim that $delta$ is finite. If not, $delta$ is infinite and thus $deltageomega$. Then $omega^{beta+1}=omega^betacdotomegaleomega^betacdotdeltalealpha$ and thus $omega^{beta+1}lealpha$. This contradicts the maximality of $beta$. Thus $delta$ is finite. Let $beta_1=beta$ and $k_1=delta$. If $rho=0$, then $alpha=omega^{beta_1}cdot k_1$. If $rho>0$, then $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ for some $beta_2>cdots>beta_n$ and finite $k_2,cdots,k_n>0$ by inductive hypothesis. We have $omega^{beta_2}lerho<omega^{beta_1}$, then $beta_2<beta_1$. As a result, $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ as desired.



We observed that $beta<gammaimpliesforall kinomega:omega^betacdot k<omega^gamma$. This is because $omega^betacdot k<omega^betacdotomega=omega^{beta+1}leomega^gamma$. It follows that if $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$ is in normal form and $beta_1<gamma$, then $alpha<omega^gamma$.



Uniqueness



Assume that the normal form of $xi$ is unique for all $xi<alpha$.



Let $alpha=omega^{beta_1}cdot k_1+omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n=omega^{gamma_1}cdot l_1+omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. The previous observation implies that $beta_1=gamma_1$. Let $delta=omega^{beta_1}=omega^{gamma_1}$, $rho=omega^{beta_2}cdot k_2+cdots+omega^{beta_n}cdot k_n$, and $sigma=omega^{gamma_2}cdot l_2+cdots+omega^{gamma_m}cdot l_m$. Then $alpha=deltacdot k_1+rho=deltacdot l_1+sigma$ where $rho<delta$ and $sigma<delta$. Thus $k_1=l_1$ and $rho=sigma$. By inductive hypothesis, the normal form of $rho$ is unique and thus $m=n$, $beta_2=gamma_2,cdots,beta_n=gamma_n, k_2=l_2,cdots,k_n=l_m$. It follows that the normal form of $alpha$ is unique.







elementary-set-theory ordinals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 23 hours ago









Le Anh Dung

8921421




8921421












  • I think that you must to argue why $beta$ is a maximum.
    – Gödel
    20 hours ago










  • Hi @Gödel! I proved that such $beta$ exists before and take that for granted.
    – Le Anh Dung
    13 hours ago




















  • I think that you must to argue why $beta$ is a maximum.
    – Gödel
    20 hours ago










  • Hi @Gödel! I proved that such $beta$ exists before and take that for granted.
    – Le Anh Dung
    13 hours ago


















I think that you must to argue why $beta$ is a maximum.
– Gödel
20 hours ago




I think that you must to argue why $beta$ is a maximum.
– Gödel
20 hours ago












Hi @Gödel! I proved that such $beta$ exists before and take that for granted.
– Le Anh Dung
13 hours ago






Hi @Gödel! I proved that such $beta$ exists before and take that for granted.
– Le Anh Dung
13 hours ago

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004856%2fevery-ordinal-alpha0-can-be-expressed-uniquely-as-alpha-omega-beta-1-c%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004856%2fevery-ordinal-alpha0-can-be-expressed-uniquely-as-alpha-omega-beta-1-c%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$