Random variable and maximum metric.











up vote
1
down vote

favorite












Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
I need help,beacuse it is quite difficult.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
    I need help,beacuse it is quite difficult.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
      I need help,beacuse it is quite difficult.










      share|cite|improve this question













      Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
      I need help,beacuse it is quite difficult.







      probability probability-distributions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      PabloZ392

      1356




      1356






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Hint



          Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$



          Added



          Set
          begin{align*}
          X_1(omega )&=sup{omega _1,omega _2}\
          X_2(omega )&=sup{omega _1,1-omega _2}\
          X_3(omega )&=sup{1-omega _1,omega _2}\
          X_4(omega )&=sup{1-omega _1,1-omega _2}.
          end{align*}



          $$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
          Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
          the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.



          The rest goes the same.






          share|cite|improve this answer























          • We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
            – PabloZ392
            2 days ago










          • I have problem with probability distribution and CDF.
            – PabloZ392
            2 days ago










          • @PabloZ392: I edited my answer.
            – idm
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003536%2frandom-variable-and-maximum-metric%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Hint



          Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$



          Added



          Set
          begin{align*}
          X_1(omega )&=sup{omega _1,omega _2}\
          X_2(omega )&=sup{omega _1,1-omega _2}\
          X_3(omega )&=sup{1-omega _1,omega _2}\
          X_4(omega )&=sup{1-omega _1,1-omega _2}.
          end{align*}



          $$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
          Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
          the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.



          The rest goes the same.






          share|cite|improve this answer























          • We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
            – PabloZ392
            2 days ago










          • I have problem with probability distribution and CDF.
            – PabloZ392
            2 days ago










          • @PabloZ392: I edited my answer.
            – idm
            yesterday















          up vote
          1
          down vote



          accepted










          Hint



          Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$



          Added



          Set
          begin{align*}
          X_1(omega )&=sup{omega _1,omega _2}\
          X_2(omega )&=sup{omega _1,1-omega _2}\
          X_3(omega )&=sup{1-omega _1,omega _2}\
          X_4(omega )&=sup{1-omega _1,1-omega _2}.
          end{align*}



          $$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
          Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
          the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.



          The rest goes the same.






          share|cite|improve this answer























          • We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
            – PabloZ392
            2 days ago










          • I have problem with probability distribution and CDF.
            – PabloZ392
            2 days ago










          • @PabloZ392: I edited my answer.
            – idm
            yesterday













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Hint



          Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$



          Added



          Set
          begin{align*}
          X_1(omega )&=sup{omega _1,omega _2}\
          X_2(omega )&=sup{omega _1,1-omega _2}\
          X_3(omega )&=sup{1-omega _1,omega _2}\
          X_4(omega )&=sup{1-omega _1,1-omega _2}.
          end{align*}



          $$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
          Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
          the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.



          The rest goes the same.






          share|cite|improve this answer














          Hint



          Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$



          Added



          Set
          begin{align*}
          X_1(omega )&=sup{omega _1,omega _2}\
          X_2(omega )&=sup{omega _1,1-omega _2}\
          X_3(omega )&=sup{1-omega _1,omega _2}\
          X_4(omega )&=sup{1-omega _1,1-omega _2}.
          end{align*}



          $$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
          Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
          the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.



          The rest goes the same.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered 2 days ago









          idm

          8,53021245




          8,53021245












          • We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
            – PabloZ392
            2 days ago










          • I have problem with probability distribution and CDF.
            – PabloZ392
            2 days ago










          • @PabloZ392: I edited my answer.
            – idm
            yesterday


















          • We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
            – PabloZ392
            2 days ago










          • I have problem with probability distribution and CDF.
            – PabloZ392
            2 days ago










          • @PabloZ392: I edited my answer.
            – idm
            yesterday
















          We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
          – PabloZ392
          2 days ago




          We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
          – PabloZ392
          2 days ago












          I have problem with probability distribution and CDF.
          – PabloZ392
          2 days ago




          I have problem with probability distribution and CDF.
          – PabloZ392
          2 days ago












          @PabloZ392: I edited my answer.
          – idm
          yesterday




          @PabloZ392: I edited my answer.
          – idm
          yesterday


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003536%2frandom-variable-and-maximum-metric%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

          Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

          A Topological Invariant for $pi_3(U(n))$