singular value decomposition of simple $2times2$ matrix.











up vote
1
down vote

favorite
1












Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.



Determine a singular value decomposition of $A$.



As far as I know the SVD can be calculated as follows:



$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.



The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$



$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.



For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$



So $U = begin{bmatrix}1&0\0&1end{bmatrix}$



Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$



For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$



So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.



But if I now use $A=USigma V^T$ I do not get the correct $A$.



I don't know what I'm doing wrong anymore.










share|cite|improve this question




















  • 4




    Your $V$ is not orthogonal.
    – Yves Daoust
    yesterday






  • 1




    Your columns of $V$ are in the wrong order I think
    – Richard Martin
    yesterday






  • 1




    And then you have to rescale $V$ so it becomes orthogonal
    – Richard Martin
    yesterday















up vote
1
down vote

favorite
1












Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.



Determine a singular value decomposition of $A$.



As far as I know the SVD can be calculated as follows:



$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.



The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$



$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.



For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$



So $U = begin{bmatrix}1&0\0&1end{bmatrix}$



Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$



For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$



So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.



But if I now use $A=USigma V^T$ I do not get the correct $A$.



I don't know what I'm doing wrong anymore.










share|cite|improve this question




















  • 4




    Your $V$ is not orthogonal.
    – Yves Daoust
    yesterday






  • 1




    Your columns of $V$ are in the wrong order I think
    – Richard Martin
    yesterday






  • 1




    And then you have to rescale $V$ so it becomes orthogonal
    – Richard Martin
    yesterday













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.



Determine a singular value decomposition of $A$.



As far as I know the SVD can be calculated as follows:



$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.



The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$



$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.



For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$



So $U = begin{bmatrix}1&0\0&1end{bmatrix}$



Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$



For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$



So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.



But if I now use $A=USigma V^T$ I do not get the correct $A$.



I don't know what I'm doing wrong anymore.










share|cite|improve this question















Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.



Determine a singular value decomposition of $A$.



As far as I know the SVD can be calculated as follows:



$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.



The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$



$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.



In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.



For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$



So $U = begin{bmatrix}1&0\0&1end{bmatrix}$



Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$



For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$



For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$



So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.



But if I now use $A=USigma V^T$ I do not get the correct $A$.



I don't know what I'm doing wrong anymore.







linear-algebra matrices matrix-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Tianlalu

2,559632




2,559632










asked yesterday









user463102

14013




14013








  • 4




    Your $V$ is not orthogonal.
    – Yves Daoust
    yesterday






  • 1




    Your columns of $V$ are in the wrong order I think
    – Richard Martin
    yesterday






  • 1




    And then you have to rescale $V$ so it becomes orthogonal
    – Richard Martin
    yesterday














  • 4




    Your $V$ is not orthogonal.
    – Yves Daoust
    yesterday






  • 1




    Your columns of $V$ are in the wrong order I think
    – Richard Martin
    yesterday






  • 1




    And then you have to rescale $V$ so it becomes orthogonal
    – Richard Martin
    yesterday








4




4




Your $V$ is not orthogonal.
– Yves Daoust
yesterday




Your $V$ is not orthogonal.
– Yves Daoust
yesterday




1




1




Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday




Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday




1




1




And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday




And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










$V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004879%2fsingular-value-decomposition-of-simple-2-times2-matrix%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    $V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$






    share|cite|improve this answer



























      up vote
      1
      down vote



      accepted










      $V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$






      share|cite|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        $V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$






        share|cite|improve this answer














        $V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 22 hours ago









        Moo

        5,2683920




        5,2683920










        answered yesterday









        Rima Khouja

        965




        965






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004879%2fsingular-value-decomposition-of-simple-2-times2-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$