singular value decomposition of simple $2times2$ matrix.
up vote
1
down vote
favorite
Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.
Determine a singular value decomposition of $A$.
As far as I know the SVD can be calculated as follows:
$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.
The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$
$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.
For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$
So $U = begin{bmatrix}1&0\0&1end{bmatrix}$
Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$
For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$
So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.
But if I now use $A=USigma V^T$ I do not get the correct $A$.
I don't know what I'm doing wrong anymore.
linear-algebra matrices matrix-calculus
add a comment |
up vote
1
down vote
favorite
Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.
Determine a singular value decomposition of $A$.
As far as I know the SVD can be calculated as follows:
$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.
The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$
$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.
For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$
So $U = begin{bmatrix}1&0\0&1end{bmatrix}$
Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$
For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$
So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.
But if I now use $A=USigma V^T$ I do not get the correct $A$.
I don't know what I'm doing wrong anymore.
linear-algebra matrices matrix-calculus
4
Your $V$ is not orthogonal.
– Yves Daoust
yesterday
1
Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday
1
And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.
Determine a singular value decomposition of $A$.
As far as I know the SVD can be calculated as follows:
$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.
The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$
$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.
For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$
So $U = begin{bmatrix}1&0\0&1end{bmatrix}$
Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$
For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$
So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.
But if I now use $A=USigma V^T$ I do not get the correct $A$.
I don't know what I'm doing wrong anymore.
linear-algebra matrices matrix-calculus
Consider the matrix $A=begin{bmatrix}1& varepsilon\ 0 & 0 end{bmatrix}$ where $varepsilon >0$.
Determine a singular value decomposition of $A$.
As far as I know the SVD can be calculated as follows:
$A=USigma V^T$
in which $U$ are the eigenvectors of $AA^T$ and $V$ are the eigenvectors of $A^{T}A$.
The singular values are $0$ and $sqrt{varepsilon^2+1}quad$
So $Sigma=begin{bmatrix}sqrt{varepsilon^2+1 }&0\0& 0 end{bmatrix}$
$AA^T=begin{bmatrix}1+varepsilon^2 & 0\0&0end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
$A^TA=begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2 end{bmatrix}$ with eigenvalues $0$ and $1+varepsilon^2$.
In order to calculate the matix $U$, we take $(AA^T-lambda I) underline{u}_i = 0$.
For $lambda = 1+varepsilon^2$ this gives: $begin{bmatrix}0&0\0&-1-varepsilon^2 end{bmatrix} underline{u}_1 = 0 quad$ so $underline{u}_1=begin{bmatrix}1\0 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1+varepsilon^2&0\0&0end{bmatrix} underline{u}_2=0 quad$so $underline{u}_2=begin{bmatrix}0\1 end{bmatrix}$
So $U = begin{bmatrix}1&0\0&1end{bmatrix}$
Next we calculate $V$: using $(A^TA-lambda I)underline{v}_i=0.$
For $lambda=1+varepsilon^2$ this gives: $begin{bmatrix}-varepsilon^2&varepsilon\varepsilon&-1end{bmatrix}underline{v}_i = 0 quad$ so $underline{v}_1=begin{bmatrix}frac{1}{varepsilon}\1 end{bmatrix}$
For $lambda=0$ this gives:
$begin{bmatrix}1&varepsilon\varepsilon&varepsilon^2end{bmatrix} underline{v}_2=0 quad$so $underline{v}_2=begin{bmatrix}1\ -frac{1}{varepsilon} end{bmatrix}$
So $V=begin{bmatrix}1&frac{1}{varepsilon}\-frac{1}{varepsilon}&1 end{bmatrix}$.
But if I now use $A=USigma V^T$ I do not get the correct $A$.
I don't know what I'm doing wrong anymore.
linear-algebra matrices matrix-calculus
linear-algebra matrices matrix-calculus
edited yesterday
Tianlalu
2,559632
2,559632
asked yesterday
user463102
14013
14013
4
Your $V$ is not orthogonal.
– Yves Daoust
yesterday
1
Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday
1
And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday
add a comment |
4
Your $V$ is not orthogonal.
– Yves Daoust
yesterday
1
Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday
1
And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday
4
4
Your $V$ is not orthogonal.
– Yves Daoust
yesterday
Your $V$ is not orthogonal.
– Yves Daoust
yesterday
1
1
Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday
Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday
1
1
And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday
And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
$V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
$V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$
add a comment |
up vote
1
down vote
accepted
$V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
$V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$
$V$ contains two vectors the first is $v_1=[-epsilon~~ 1]$ the second is $v_2=[1 ~~epsilon]$
edited 22 hours ago
Moo
5,2683920
5,2683920
answered yesterday
Rima Khouja
965
965
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004879%2fsingular-value-decomposition-of-simple-2-times2-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
Your $V$ is not orthogonal.
– Yves Daoust
yesterday
1
Your columns of $V$ are in the wrong order I think
– Richard Martin
yesterday
1
And then you have to rescale $V$ so it becomes orthogonal
– Richard Martin
yesterday