Finding an interpolating second order polynomial going through a given point
Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.
Thanks,
Bob
Problem:
Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
$$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
begin{align*}
D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
D_A &= 216A + 72B + 28C - 172 \
D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
D_A &= -232A - 40B + 112 - 172 \
D_A &= -120A - 12B - 60 \
D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
D_B &= 73A + 29B + 13C - 83 \
D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
D_B &= -135A - 23B - 31 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
-120A - 12B - 60 &= 0 \
-135A - 23B - 31 &= 0 \
60A + 6B + 30 &= 0 \
30A + 3B + 15 &= 0 \
3B &= -30A - 15 \
B &= -10A - 5 \
135A + 23B + 31 &= 0 \
135A + 23( -10A - 5) + 31 &= 0 \
135A - 230A - 115 + 31 &= 0 \
-95A - 84 &= 0 \
A &= -frac{84}{95} \
end{align*}
Now we solve for $B$ and then $C$.
begin{align*}
B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
B &= frac{840}{95} - 5 \
B &= frac{ 365 } {95} \
B &= frac{73}{9} \
C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
C &= frac{ 15516 - 27740}{9(95)} \
C &= frac{ -12224}{855} \
end{align*}
Hence our interpolating polynomial is:
$$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Based upon the comments of Siong Thye Goh I have updated my post. However, my
answer is still wrong. I am hoping that somebody can tell me where I went wrong
and/ or correct it.
Thanks,
Bob
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
begin{align*}
D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
&+ 2(9 + C_A)( 9A + 3B + C - 7) \
D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
&+ 2(9 - 16)( 9A + 3B + C - 7) \
D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
&+ 2(-7)( 9A + 3B + C - 7) \
D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
D_A &= -252A - 120B - 100C + 340 \
D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
D_A &= 1358A + 280B - 60 \
end{align*}
begin{align*}
D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
&+ 2(3+C_B)( 9A + 3B + C - 7) \
D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
D_B &= -43A + 45B - 6C + 1 \
D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
D_B &= 53A + 69B - 23 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
1358A + 280B - 60 &= 0 \
53A + 69B - 23 &= 0 \
679A + 140B - 30 &= 0 \
140B &= 30 - 679A \
B &= frac{30}{140} - frac{679A}{140} \
B &= frac{3}{14} - frac{679A}{140} \
53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
53A - frac{35987A}{140} - frac{115}{14} &= 0 \
-frac{28567A}{140} &= frac{115}{14} \
-28567A &= 1150 \
A &= -frac{1150}{28567} \
B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
end{align*}
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Hence, I am confident that my solution is wrong.
statistics multivariable-calculus
add a comment |
Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.
Thanks,
Bob
Problem:
Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
$$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
begin{align*}
D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
D_A &= 216A + 72B + 28C - 172 \
D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
D_A &= -232A - 40B + 112 - 172 \
D_A &= -120A - 12B - 60 \
D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
D_B &= 73A + 29B + 13C - 83 \
D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
D_B &= -135A - 23B - 31 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
-120A - 12B - 60 &= 0 \
-135A - 23B - 31 &= 0 \
60A + 6B + 30 &= 0 \
30A + 3B + 15 &= 0 \
3B &= -30A - 15 \
B &= -10A - 5 \
135A + 23B + 31 &= 0 \
135A + 23( -10A - 5) + 31 &= 0 \
135A - 230A - 115 + 31 &= 0 \
-95A - 84 &= 0 \
A &= -frac{84}{95} \
end{align*}
Now we solve for $B$ and then $C$.
begin{align*}
B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
B &= frac{840}{95} - 5 \
B &= frac{ 365 } {95} \
B &= frac{73}{9} \
C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
C &= frac{ 15516 - 27740}{9(95)} \
C &= frac{ -12224}{855} \
end{align*}
Hence our interpolating polynomial is:
$$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Based upon the comments of Siong Thye Goh I have updated my post. However, my
answer is still wrong. I am hoping that somebody can tell me where I went wrong
and/ or correct it.
Thanks,
Bob
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
begin{align*}
D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
&+ 2(9 + C_A)( 9A + 3B + C - 7) \
D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
&+ 2(9 - 16)( 9A + 3B + C - 7) \
D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
&+ 2(-7)( 9A + 3B + C - 7) \
D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
D_A &= -252A - 120B - 100C + 340 \
D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
D_A &= 1358A + 280B - 60 \
end{align*}
begin{align*}
D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
&+ 2(3+C_B)( 9A + 3B + C - 7) \
D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
D_B &= -43A + 45B - 6C + 1 \
D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
D_B &= 53A + 69B - 23 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
1358A + 280B - 60 &= 0 \
53A + 69B - 23 &= 0 \
679A + 140B - 30 &= 0 \
140B &= 30 - 679A \
B &= frac{30}{140} - frac{679A}{140} \
B &= frac{3}{14} - frac{679A}{140} \
53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
53A - frac{35987A}{140} - frac{115}{14} &= 0 \
-frac{28567A}{140} &= frac{115}{14} \
-28567A &= 1150 \
A &= -frac{1150}{28567} \
B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
end{align*}
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Hence, I am confident that my solution is wrong.
statistics multivariable-calculus
add a comment |
Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.
Thanks,
Bob
Problem:
Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
$$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
begin{align*}
D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
D_A &= 216A + 72B + 28C - 172 \
D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
D_A &= -232A - 40B + 112 - 172 \
D_A &= -120A - 12B - 60 \
D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
D_B &= 73A + 29B + 13C - 83 \
D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
D_B &= -135A - 23B - 31 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
-120A - 12B - 60 &= 0 \
-135A - 23B - 31 &= 0 \
60A + 6B + 30 &= 0 \
30A + 3B + 15 &= 0 \
3B &= -30A - 15 \
B &= -10A - 5 \
135A + 23B + 31 &= 0 \
135A + 23( -10A - 5) + 31 &= 0 \
135A - 230A - 115 + 31 &= 0 \
-95A - 84 &= 0 \
A &= -frac{84}{95} \
end{align*}
Now we solve for $B$ and then $C$.
begin{align*}
B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
B &= frac{840}{95} - 5 \
B &= frac{ 365 } {95} \
B &= frac{73}{9} \
C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
C &= frac{ 15516 - 27740}{9(95)} \
C &= frac{ -12224}{855} \
end{align*}
Hence our interpolating polynomial is:
$$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Based upon the comments of Siong Thye Goh I have updated my post. However, my
answer is still wrong. I am hoping that somebody can tell me where I went wrong
and/ or correct it.
Thanks,
Bob
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
begin{align*}
D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
&+ 2(9 + C_A)( 9A + 3B + C - 7) \
D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
&+ 2(9 - 16)( 9A + 3B + C - 7) \
D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
&+ 2(-7)( 9A + 3B + C - 7) \
D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
D_A &= -252A - 120B - 100C + 340 \
D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
D_A &= 1358A + 280B - 60 \
end{align*}
begin{align*}
D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
&+ 2(3+C_B)( 9A + 3B + C - 7) \
D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
D_B &= -43A + 45B - 6C + 1 \
D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
D_B &= 53A + 69B - 23 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
1358A + 280B - 60 &= 0 \
53A + 69B - 23 &= 0 \
679A + 140B - 30 &= 0 \
140B &= 30 - 679A \
B &= frac{30}{140} - frac{679A}{140} \
B &= frac{3}{14} - frac{679A}{140} \
53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
53A - frac{35987A}{140} - frac{115}{14} &= 0 \
-frac{28567A}{140} &= frac{115}{14} \
-28567A &= 1150 \
A &= -frac{1150}{28567} \
B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
end{align*}
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Hence, I am confident that my solution is wrong.
statistics multivariable-calculus
Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.
Thanks,
Bob
Problem:
Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
$$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
begin{align*}
D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
D_A &= 216A + 72B + 28C - 172 \
D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
D_A &= -232A - 40B + 112 - 172 \
D_A &= -120A - 12B - 60 \
D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
D_B &= 73A + 29B + 13C - 83 \
D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
D_B &= -135A - 23B - 31 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
-120A - 12B - 60 &= 0 \
-135A - 23B - 31 &= 0 \
60A + 6B + 30 &= 0 \
30A + 3B + 15 &= 0 \
3B &= -30A - 15 \
B &= -10A - 5 \
135A + 23B + 31 &= 0 \
135A + 23( -10A - 5) + 31 &= 0 \
135A - 230A - 115 + 31 &= 0 \
-95A - 84 &= 0 \
A &= -frac{84}{95} \
end{align*}
Now we solve for $B$ and then $C$.
begin{align*}
B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
B &= frac{840}{95} - 5 \
B &= frac{ 365 } {95} \
B &= frac{73}{9} \
C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
C &= frac{ 15516 - 27740}{9(95)} \
C &= frac{ -12224}{855} \
end{align*}
Hence our interpolating polynomial is:
$$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Based upon the comments of Siong Thye Goh I have updated my post. However, my
answer is still wrong. I am hoping that somebody can tell me where I went wrong
and/ or correct it.
Thanks,
Bob
Answer:
Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}
Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}
Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
begin{align*}
D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
&+ 2(9 + C_A)( 9A + 3B + C - 7) \
D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
&+ 2(9 - 16)( 9A + 3B + C - 7) \
D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
&+ 2(-7)( 9A + 3B + C - 7) \
D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
D_A &= -252A - 120B - 100C + 340 \
D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
D_A &= 1358A + 280B - 60 \
end{align*}
begin{align*}
D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
&+ 2(3+C_B)( 9A + 3B + C - 7) \
D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
D_B &= -43A + 45B - 6C + 1 \
D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
D_B &= 53A + 69B - 23 \
end{align*}
Now we need to solve th following system of two equations:
begin{align*}
1358A + 280B - 60 &= 0 \
53A + 69B - 23 &= 0 \
679A + 140B - 30 &= 0 \
140B &= 30 - 679A \
B &= frac{30}{140} - frac{679A}{140} \
B &= frac{3}{14} - frac{679A}{140} \
53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
53A - frac{35987A}{140} - frac{115}{14} &= 0 \
-frac{28567A}{140} &= frac{115}{14} \
-28567A &= 1150 \
A &= -frac{1150}{28567} \
B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
end{align*}
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Hence, I am confident that my solution is wrong.
statistics multivariable-calculus
statistics multivariable-calculus
edited Jan 2 at 0:45
Bob
asked Jan 1 at 1:57
BobBob
902514
902514
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
You are treating $C$ as a constant but it is a function of $A$ and $B$.
We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.
We have
$$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
Hence,
begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
end{align}
Similarly for $D_B$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058165%2ffinding-an-interpolating-second-order-polynomial-going-through-a-given-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You are treating $C$ as a constant but it is a function of $A$ and $B$.
We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.
We have
$$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
Hence,
begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
end{align}
Similarly for $D_B$.
add a comment |
You are treating $C$ as a constant but it is a function of $A$ and $B$.
We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.
We have
$$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
Hence,
begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
end{align}
Similarly for $D_B$.
add a comment |
You are treating $C$ as a constant but it is a function of $A$ and $B$.
We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.
We have
$$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
Hence,
begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
end{align}
Similarly for $D_B$.
You are treating $C$ as a constant but it is a function of $A$ and $B$.
We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.
We have
$$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
Hence,
begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
end{align}
Similarly for $D_B$.
answered Jan 1 at 3:47


Siong Thye GohSiong Thye Goh
100k1465117
100k1465117
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058165%2ffinding-an-interpolating-second-order-polynomial-going-through-a-given-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown