Finding an interpolating second order polynomial going through a given point












0














Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.

Thanks,

Bob



Problem:

Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
$$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$

Answer:

Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}

Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}

begin{align*}
D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
D_A &= 216A + 72B + 28C - 172 \
D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
D_A &= -232A - 40B + 112 - 172 \
D_A &= -120A - 12B - 60 \
D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
D_B &= 73A + 29B + 13C - 83 \
D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
D_B &= -135A - 23B - 31 \
end{align*}

Now we need to solve th following system of two equations:
begin{align*}
-120A - 12B - 60 &= 0 \
-135A - 23B - 31 &= 0 \
60A + 6B + 30 &= 0 \
30A + 3B + 15 &= 0 \
3B &= -30A - 15 \
B &= -10A - 5 \
135A + 23B + 31 &= 0 \
135A + 23( -10A - 5) + 31 &= 0 \
135A - 230A - 115 + 31 &= 0 \
-95A - 84 &= 0 \
A &= -frac{84}{95} \
end{align*}

Now we solve for $B$ and then $C$.
begin{align*}
B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
B &= frac{840}{95} - 5 \
B &= frac{ 365 } {95} \
B &= frac{73}{9} \
C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
C &= frac{ 15516 - 27740}{9(95)} \
C &= frac{ -12224}{855} \
end{align*}

Hence our interpolating polynomial is:
$$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$



Based upon the comments of Siong Thye Goh I have updated my post. However, my
answer is still wrong. I am hoping that somebody can tell me where I went wrong
and/ or correct it.

Thanks,

Bob



Answer:

Since the point $(4,4)$ must be on the curve, we have:
begin{align*}
f(4) &= 16A + 4B + C = 4 \
C &= 4 - 16A - 4B \
end{align*}

Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
$B$ such that $D$ is minimized.
begin{align*}
(f(0) - 1)^2 &= ( C - 1)^2 \
(f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
(f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
(f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
end{align*}

Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
begin{align*}
D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
&+ 2(9 + C_A)( 9A + 3B + C - 7) \
D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
&+ 2(9 - 16)( 9A + 3B + C - 7) \
D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
&+ 2(-7)( 9A + 3B + C - 7) \
D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
D_A &= -252A - 120B - 100C + 340 \
D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
D_A &= 1358A + 280B - 60 \
end{align*}

begin{align*}
D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
&+ 2(3+C_B)( 9A + 3B + C - 7) \
D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
&+ 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
D_B &= -43A + 45B - 6C + 1 \
D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
D_B &= 53A + 69B - 23 \
end{align*}

Now we need to solve th following system of two equations:
begin{align*}
1358A + 280B - 60 &= 0 \
53A + 69B - 23 &= 0 \
679A + 140B - 30 &= 0 \
140B &= 30 - 679A \
B &= frac{30}{140} - frac{679A}{140} \
B &= frac{3}{14} - frac{679A}{140} \
53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
53A - frac{35987A}{140} - frac{115}{14} &= 0 \
-frac{28567A}{140} &= frac{115}{14} \
-28567A &= 1150 \
A &= -frac{1150}{28567} \
B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
end{align*}



However, the program R gets:
$$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
Hence, I am confident that my solution is wrong.










share|cite|improve this question





























    0














    Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.

    Thanks,

    Bob



    Problem:

    Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
    interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
    $$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$

    Answer:

    Since the point $(4,4)$ must be on the curve, we have:
    begin{align*}
    f(4) &= 16A + 4B + C = 4 \
    C &= 4 - 16A - 4B \
    end{align*}

    Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
    $B$ such that $D$ is minimized.
    begin{align*}
    (f(0) - 1)^2 &= ( C - 1)^2 \
    (f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
    (f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
    (f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
    D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
    end{align*}

    begin{align*}
    D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
    D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
    D_A &= 216A + 72B + 28C - 172 \
    D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
    D_A &= -232A - 40B + 112 - 172 \
    D_A &= -120A - 12B - 60 \
    D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
    D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
    D_B &= 73A + 29B + 13C - 83 \
    D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
    D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
    D_B &= -135A - 23B - 31 \
    end{align*}

    Now we need to solve th following system of two equations:
    begin{align*}
    -120A - 12B - 60 &= 0 \
    -135A - 23B - 31 &= 0 \
    60A + 6B + 30 &= 0 \
    30A + 3B + 15 &= 0 \
    3B &= -30A - 15 \
    B &= -10A - 5 \
    135A + 23B + 31 &= 0 \
    135A + 23( -10A - 5) + 31 &= 0 \
    135A - 230A - 115 + 31 &= 0 \
    -95A - 84 &= 0 \
    A &= -frac{84}{95} \
    end{align*}

    Now we solve for $B$ and then $C$.
    begin{align*}
    B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
    B &= frac{840}{95} - 5 \
    B &= frac{ 365 } {95} \
    B &= frac{73}{9} \
    C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
    C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
    C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
    C &= frac{ 15516 - 27740}{9(95)} \
    C &= frac{ -12224}{855} \
    end{align*}

    Hence our interpolating polynomial is:
    $$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
    However, the program R gets:
    $$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$



    Based upon the comments of Siong Thye Goh I have updated my post. However, my
    answer is still wrong. I am hoping that somebody can tell me where I went wrong
    and/ or correct it.

    Thanks,

    Bob



    Answer:

    Since the point $(4,4)$ must be on the curve, we have:
    begin{align*}
    f(4) &= 16A + 4B + C = 4 \
    C &= 4 - 16A - 4B \
    end{align*}

    Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
    $B$ such that $D$ is minimized.
    begin{align*}
    (f(0) - 1)^2 &= ( C - 1)^2 \
    (f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
    (f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
    (f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
    D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
    end{align*}

    Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
    begin{align*}
    D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
    &+ 2(9 + C_A)( 9A + 3B + C - 7) \
    D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
    &+ 2(9 - 16)( 9A + 3B + C - 7) \
    D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
    &+ 2(-7)( 9A + 3B + C - 7) \
    D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
    D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
    D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
    D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
    D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
    D_A &= -252A - 120B - 100C + 340 \
    D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
    D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
    D_A &= 1358A + 280B - 60 \
    end{align*}

    begin{align*}
    D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
    &+ 2(3+C_B)( 9A + 3B + C - 7) \
    D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
    &+ 2(3 - 4)( 9A + 3B + C - 7) \
    D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
    &+ 2(3 - 4)( 9A + 3B + C - 7) \
    D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
    &+ 2(3 - 4)( 9A + 3B + C - 7) \
    D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
    D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
    D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
    &+ 2(3 - 4)( 9A + 3B + C - 7) \
    D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
    D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
    D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
    D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
    D_B &= -43A + 45B - 6C + 1 \
    D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
    D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
    D_B &= 53A + 69B - 23 \
    end{align*}

    Now we need to solve th following system of two equations:
    begin{align*}
    1358A + 280B - 60 &= 0 \
    53A + 69B - 23 &= 0 \
    679A + 140B - 30 &= 0 \
    140B &= 30 - 679A \
    B &= frac{30}{140} - frac{679A}{140} \
    B &= frac{3}{14} - frac{679A}{140} \
    53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
    53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
    53A - frac{35987A}{140} - frac{115}{14} &= 0 \
    -frac{28567A}{140} &= frac{115}{14} \
    -28567A &= 1150 \
    A &= -frac{1150}{28567} \
    B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
    B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
    end{align*}



    However, the program R gets:
    $$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
    Hence, I am confident that my solution is wrong.










    share|cite|improve this question



























      0












      0








      0







      Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.

      Thanks,

      Bob



      Problem:

      Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
      interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
      $$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$

      Answer:

      Since the point $(4,4)$ must be on the curve, we have:
      begin{align*}
      f(4) &= 16A + 4B + C = 4 \
      C &= 4 - 16A - 4B \
      end{align*}

      Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
      $B$ such that $D$ is minimized.
      begin{align*}
      (f(0) - 1)^2 &= ( C - 1)^2 \
      (f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
      (f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
      (f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
      D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
      end{align*}

      begin{align*}
      D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
      D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
      D_A &= 216A + 72B + 28C - 172 \
      D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
      D_A &= -232A - 40B + 112 - 172 \
      D_A &= -120A - 12B - 60 \
      D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
      D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
      D_B &= 73A + 29B + 13C - 83 \
      D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
      D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
      D_B &= -135A - 23B - 31 \
      end{align*}

      Now we need to solve th following system of two equations:
      begin{align*}
      -120A - 12B - 60 &= 0 \
      -135A - 23B - 31 &= 0 \
      60A + 6B + 30 &= 0 \
      30A + 3B + 15 &= 0 \
      3B &= -30A - 15 \
      B &= -10A - 5 \
      135A + 23B + 31 &= 0 \
      135A + 23( -10A - 5) + 31 &= 0 \
      135A - 230A - 115 + 31 &= 0 \
      -95A - 84 &= 0 \
      A &= -frac{84}{95} \
      end{align*}

      Now we solve for $B$ and then $C$.
      begin{align*}
      B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
      B &= frac{840}{95} - 5 \
      B &= frac{ 365 } {95} \
      B &= frac{73}{9} \
      C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
      C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
      C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
      C &= frac{ 15516 - 27740}{9(95)} \
      C &= frac{ -12224}{855} \
      end{align*}

      Hence our interpolating polynomial is:
      $$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
      However, the program R gets:
      $$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$



      Based upon the comments of Siong Thye Goh I have updated my post. However, my
      answer is still wrong. I am hoping that somebody can tell me where I went wrong
      and/ or correct it.

      Thanks,

      Bob



      Answer:

      Since the point $(4,4)$ must be on the curve, we have:
      begin{align*}
      f(4) &= 16A + 4B + C = 4 \
      C &= 4 - 16A - 4B \
      end{align*}

      Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
      $B$ such that $D$ is minimized.
      begin{align*}
      (f(0) - 1)^2 &= ( C - 1)^2 \
      (f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
      (f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
      (f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
      D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
      end{align*}

      Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
      begin{align*}
      D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
      &+ 2(9 + C_A)( 9A + 3B + C - 7) \
      D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
      &+ 2(9 - 16)( 9A + 3B + C - 7) \
      D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
      &+ 2(-7)( 9A + 3B + C - 7) \
      D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
      D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
      D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
      D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
      D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
      D_A &= -252A - 120B - 100C + 340 \
      D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
      D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
      D_A &= 1358A + 280B - 60 \
      end{align*}

      begin{align*}
      D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
      &+ 2(3+C_B)( 9A + 3B + C - 7) \
      D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
      D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
      D_B &= -43A + 45B - 6C + 1 \
      D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
      D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
      D_B &= 53A + 69B - 23 \
      end{align*}

      Now we need to solve th following system of two equations:
      begin{align*}
      1358A + 280B - 60 &= 0 \
      53A + 69B - 23 &= 0 \
      679A + 140B - 30 &= 0 \
      140B &= 30 - 679A \
      B &= frac{30}{140} - frac{679A}{140} \
      B &= frac{3}{14} - frac{679A}{140} \
      53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
      53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
      53A - frac{35987A}{140} - frac{115}{14} &= 0 \
      -frac{28567A}{140} &= frac{115}{14} \
      -28567A &= 1150 \
      A &= -frac{1150}{28567} \
      B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
      B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
      end{align*}



      However, the program R gets:
      $$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
      Hence, I am confident that my solution is wrong.










      share|cite|improve this question















      Below is a problem that I made up and my attempt to solve it. I am fairly sure that my answer is wrong. Please note that when I write $D_A$ I mean the first partial derivative of $D$ with respect to $A$. I have a similar meaning for $D_B$. I am hoping somebody can tell me where I went wrong.

      Thanks,

      Bob



      Problem:

      Given the points $(0,1), (1,3), (2,5), (3,7), (4,4)$ find a second order
      interpolating polynomial, of the form $f(x) = Ax^2 + Bx + C$, such that the point $(4,4)$ is on the curve and the following is minimized:
      $$ (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2 $$

      Answer:

      Since the point $(4,4)$ must be on the curve, we have:
      begin{align*}
      f(4) &= 16A + 4B + C = 4 \
      C &= 4 - 16A - 4B \
      end{align*}

      Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
      $B$ such that $D$ is minimized.
      begin{align*}
      (f(0) - 1)^2 &= ( C - 1)^2 \
      (f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
      (f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
      (f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
      D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
      end{align*}

      begin{align*}
      D_A &= 2(A+B+C-3) + 8( 4A + 2B + C - 5) + 18( 9A + 3B + C - 7) \
      D_A &= (2 +32+182)A + (2+16+54)B + (2+8+18)C - 6 - 40 - 126 \
      D_A &= 216A + 72B + 28C - 172 \
      D_A &= 216A + 72B + 28(4-16A-4B) - 172 \
      D_A &= -232A - 40B + 112 - 172 \
      D_A &= -120A - 12B - 60 \
      D_B &= 3(A+B+C-3) + 4(4A+2B+C-5) + 6(9A+3B+C-7) \
      D_B &= (3+16+54)A + (3+8+18)B + (3+4+6C) - 9 - 20 - 54 \
      D_B &= 73A + 29B + 13C - 83 \
      D_B &= 73A + 29B + 13(4 - 16A - 4B) - 83 \
      D_B &= 73A + 29B + 52 - 208A - 52B - 83 \
      D_B &= -135A - 23B - 31 \
      end{align*}

      Now we need to solve th following system of two equations:
      begin{align*}
      -120A - 12B - 60 &= 0 \
      -135A - 23B - 31 &= 0 \
      60A + 6B + 30 &= 0 \
      30A + 3B + 15 &= 0 \
      3B &= -30A - 15 \
      B &= -10A - 5 \
      135A + 23B + 31 &= 0 \
      135A + 23( -10A - 5) + 31 &= 0 \
      135A - 230A - 115 + 31 &= 0 \
      -95A - 84 &= 0 \
      A &= -frac{84}{95} \
      end{align*}

      Now we solve for $B$ and then $C$.
      begin{align*}
      B &= -10left( -frac{84}{95} right) - 5 = 10left( frac{84}{95} right) - 5\
      B &= frac{840}{95} - 5 \
      B &= frac{ 365 } {95} \
      B &= frac{73}{9} \
      C &= 4 - 16left( -frac{84}{95} right) - 4 left(frac{73}{9} right) \
      C &= 4 + 16left( frac{84}{95} right) - 4 left(frac{73}{9} right) \
      C &= 4 + frac{1344}{95} - frac{292}{9} = frac{ 4(95)(9) + 1344(9) - 292(95)}{9(95)} \
      C &= frac{ 15516 - 27740}{9(95)} \
      C &= frac{ -12224}{855} \
      end{align*}

      Hence our interpolating polynomial is:
      $$ f(x) = -left( frac{84}{95} right)x^2 + left( frac{73}{9} right) - frac{ 12224}{855} $$
      However, the program R gets:
      $$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$



      Based upon the comments of Siong Thye Goh I have updated my post. However, my
      answer is still wrong. I am hoping that somebody can tell me where I went wrong
      and/ or correct it.

      Thanks,

      Bob



      Answer:

      Since the point $(4,4)$ must be on the curve, we have:
      begin{align*}
      f(4) &= 16A + 4B + C = 4 \
      C &= 4 - 16A - 4B \
      end{align*}

      Let $D = (f(0) - 1)^2 + (f(1) -3)^2 + (f(2) - 5)^2 +( f(3) - 7)^2$. We need to find values for $A$ and
      $B$ such that $D$ is minimized.
      begin{align*}
      (f(0) - 1)^2 &= ( C - 1)^2 \
      (f(1) -3)^2 &= (A + B + C - 3)^2 = (A + B - 2)^2 \
      (f(2) - 5)^2 &= ( 4A + 2B + C - 5)^2 \
      (f(3) - 7)^2 &= (9A + 3B + C - 7)^2 \
      D &= (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2 \
      end{align*}

      Now we need to find $D_A$ and $D_B$. Observe that $C_A = -16$ and $C_B = -4$.
      begin{align*}
      D_A &= 2C_A(C-1) + 2( 1+ C_A)(A + B + C- 3) + 2(4 + C_A)( 4A + 2B + C - 5) \
      &+ 2(9 + C_A)( 9A + 3B + C - 7) \
      D_A &= 2(-16)(C-1) + 2( 1 - 16)(A + B + C- 3) + 2(4 - 16)( 4A + 2B + C - 5) \
      &+ 2(9 - 16)( 9A + 3B + C - 7) \
      D_A &= -32(C-1) + 2( -15 )(A + B + C- 3) + 2( -12 )( 4A + 2B + C - 5) \
      &+ 2(-7)( 9A + 3B + C - 7) \
      D_A &= -32(C-1) - 30(A + B + C- 3) - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
      D_A &= -32C + 32 - 30A - 30B -30C + 90 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
      D_A &= -30A - 30B -62C + 122 - 24( 4A + 2B + C - 5) - 14( 9A + 3B + C - 7) \
      D_A &= -30A - 30B - 62C + 122 - 96A - 48B - 24C + 120 - 126A - 42B - 14C + 98 \
      D_A &= -252A - (30 + 48 + 42)B -(62 + 24 + 14)C + 340 \
      D_A &= -252A - 120B - 100C + 340 \
      D_A &= -252A - 120B - 100(4 - 16A - 4B) + 340 \
      D_A &= -252A - 120B - 400 + 1600A +400B + 340 \
      D_A &= 1358A + 280B - 60 \
      end{align*}

      begin{align*}
      D_B &= 2C_B (C - 1) + 3(1 +C_B)(A + B + C- 3) + 2(2 + C_B)(4A + 2B + C - 5) \
      &+ 2(3+C_B)( 9A + 3B + C - 7) \
      D_B &= -8 (C - 1) + 3(-3)(A + B + C- 3) + 2(-2)(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -8C + 8 - 9(A + B + C- 3) - 4(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -8C + 8 - 9A - 9B - 9C + 27 - 4(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 17C + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 17(4 - 16A - 4B) + 35 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 68 - 16(17)A + 68B + 35 - 4(4A + 2B + C - 5) \
      &+ 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) + 2(3 - 4)( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 272A + 68B - 33 - 4(4A + 2B + C - 5) - 2( 9A + 3B + C - 7) \
      D_B &= -9A - 9B - 272A + 68B - 33 - 16A - 8B - 4C + 20 -18A - 6B - 2C + 14 \
      D_B &= -43A + (-9 + 68 -8 - 6)B - 6C - 33 + 20 + 14 \
      D_B &= -43A + 45B - 6C + 1 \
      D_B &= -43A + 45B - 6( 4 - 16A - 4B ) + 1 \
      D_B &= -43A + 45B - 24 + 96A + 24B + 1 \
      D_B &= 53A + 69B - 23 \
      end{align*}

      Now we need to solve th following system of two equations:
      begin{align*}
      1358A + 280B - 60 &= 0 \
      53A + 69B - 23 &= 0 \
      679A + 140B - 30 &= 0 \
      140B &= 30 - 679A \
      B &= frac{30}{140} - frac{679A}{140} \
      B &= frac{3}{14} - frac{679A}{140} \
      53A + 69left( frac{3}{14} - frac{679A}{140} right) - 23 &= 0 \
      53A + frac{69(3)}{14} - frac{35987A}{140} - 23 &= 0 \
      53A - frac{35987A}{140} - frac{115}{14} &= 0 \
      -frac{28567A}{140} &= frac{115}{14} \
      -28567A &= 1150 \
      A &= -frac{1150}{28567} \
      B &= frac{3}{14} - frac{-679(1150)}{140(28567)} \
      B &= frac{3}{14} + frac{679(1150)}{140(28567)} \
      end{align*}



      However, the program R gets:
      $$ f(x) = -0.9355 x^2 + 4.8323 x - 0.3613 $$
      Hence, I am confident that my solution is wrong.







      statistics multivariable-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 2 at 0:45







      Bob

















      asked Jan 1 at 1:57









      BobBob

      902514




      902514






















          1 Answer
          1






          active

          oldest

          votes


















          1














          You are treating $C$ as a constant but it is a function of $A$ and $B$.



          We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.



          We have
          $$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
          Hence,
          begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
          end{align}



          Similarly for $D_B$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058165%2ffinding-an-interpolating-second-order-polynomial-going-through-a-given-point%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            You are treating $C$ as a constant but it is a function of $A$ and $B$.



            We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.



            We have
            $$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
            Hence,
            begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
            end{align}



            Similarly for $D_B$.






            share|cite|improve this answer


























              1














              You are treating $C$ as a constant but it is a function of $A$ and $B$.



              We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.



              We have
              $$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
              Hence,
              begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
              end{align}



              Similarly for $D_B$.






              share|cite|improve this answer
























                1












                1








                1






                You are treating $C$ as a constant but it is a function of $A$ and $B$.



                We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.



                We have
                $$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
                Hence,
                begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
                end{align}



                Similarly for $D_B$.






                share|cite|improve this answer












                You are treating $C$ as a constant but it is a function of $A$ and $B$.



                We have $C = 4 - 16A - 4B$. That is $C_A=-16, C_B=-4$.



                We have
                $$D = (C-1)^2 + ( A+B+C-3)^2 + (4A+2B+C-5)^2 + (9A+3B+C -7)^2$$
                Hence,
                begin{align}D_A &=2C_A(C-1) +2(1+C_A)(A+B+C-3) + 2(4+C_A)( 4A + 2B + C - 5) + 2(9+C_A)( 9A + 3B + C - 7) \
                end{align}



                Similarly for $D_B$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 1 at 3:47









                Siong Thye GohSiong Thye Goh

                100k1465117




                100k1465117






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058165%2ffinding-an-interpolating-second-order-polynomial-going-through-a-given-point%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith