Conjecture:$int_0^{pi/2} left(frac{sin(2n+1)x}{sin x}right)^beta dx$ is integer multiple of $pi/2$,for...












14














I was solving the integral $$I_n=int_0^{frac {pi}{2}} left(frac {sin ((2n+1)x)}{sin x}right)^2 dx$$



With $nge 0$ And $nin mathbb{N}$



On solving, I got $$I_n =frac {(2n+1)pi}{2}$$



But, due to curiosity, I started investigating the family of integrals as




$$I_n(beta) =int_0^{frac {pi}{2}} left(frac {sin (2n+1)x}{sin x}right)^{beta} dx$$



On trying various values of $betagt 2$ and $betain mathbb{N}$, I conjectured that
$$I_n(beta) =c_{beta} frac{pi}{2}$$
where $c_{beta}$ denotes "Number of arrays of $beta$ integers in $-n$ to $n$ with sum $0$"




But, on trying a lot, I couldn't prove this statement. Also, I suppose that the statement could be proved with help of Dirichlet kernel, but I couldn't get the way out through it.



Any help and hints to prove/disprove the conjecture are greatly appreciated.










share|cite|improve this question




















  • 1




    @Masacroso I think $I_n$ is the integral of something alike Fejer kernel, so $sin((2n+1)x)$.
    – xbh
    Dec 29 '18 at 7:08










  • @Masacroso Edited!!!
    – Digamma
    Dec 29 '18 at 7:10










  • oeis.org/A201552
    – James Arathoon
    Dec 29 '18 at 12:21






  • 2




    See here: math.stackexchange.com/a/2885887/515527
    – Zacky
    Dec 29 '18 at 12:36










  • @James Arathoon The statement I guessed was from OEIS only and it also doesn't have any proofs.
    – Digamma
    Dec 29 '18 at 13:01
















14














I was solving the integral $$I_n=int_0^{frac {pi}{2}} left(frac {sin ((2n+1)x)}{sin x}right)^2 dx$$



With $nge 0$ And $nin mathbb{N}$



On solving, I got $$I_n =frac {(2n+1)pi}{2}$$



But, due to curiosity, I started investigating the family of integrals as




$$I_n(beta) =int_0^{frac {pi}{2}} left(frac {sin (2n+1)x}{sin x}right)^{beta} dx$$



On trying various values of $betagt 2$ and $betain mathbb{N}$, I conjectured that
$$I_n(beta) =c_{beta} frac{pi}{2}$$
where $c_{beta}$ denotes "Number of arrays of $beta$ integers in $-n$ to $n$ with sum $0$"




But, on trying a lot, I couldn't prove this statement. Also, I suppose that the statement could be proved with help of Dirichlet kernel, but I couldn't get the way out through it.



Any help and hints to prove/disprove the conjecture are greatly appreciated.










share|cite|improve this question




















  • 1




    @Masacroso I think $I_n$ is the integral of something alike Fejer kernel, so $sin((2n+1)x)$.
    – xbh
    Dec 29 '18 at 7:08










  • @Masacroso Edited!!!
    – Digamma
    Dec 29 '18 at 7:10










  • oeis.org/A201552
    – James Arathoon
    Dec 29 '18 at 12:21






  • 2




    See here: math.stackexchange.com/a/2885887/515527
    – Zacky
    Dec 29 '18 at 12:36










  • @James Arathoon The statement I guessed was from OEIS only and it also doesn't have any proofs.
    – Digamma
    Dec 29 '18 at 13:01














14












14








14


4





I was solving the integral $$I_n=int_0^{frac {pi}{2}} left(frac {sin ((2n+1)x)}{sin x}right)^2 dx$$



With $nge 0$ And $nin mathbb{N}$



On solving, I got $$I_n =frac {(2n+1)pi}{2}$$



But, due to curiosity, I started investigating the family of integrals as




$$I_n(beta) =int_0^{frac {pi}{2}} left(frac {sin (2n+1)x}{sin x}right)^{beta} dx$$



On trying various values of $betagt 2$ and $betain mathbb{N}$, I conjectured that
$$I_n(beta) =c_{beta} frac{pi}{2}$$
where $c_{beta}$ denotes "Number of arrays of $beta$ integers in $-n$ to $n$ with sum $0$"




But, on trying a lot, I couldn't prove this statement. Also, I suppose that the statement could be proved with help of Dirichlet kernel, but I couldn't get the way out through it.



Any help and hints to prove/disprove the conjecture are greatly appreciated.










share|cite|improve this question















I was solving the integral $$I_n=int_0^{frac {pi}{2}} left(frac {sin ((2n+1)x)}{sin x}right)^2 dx$$



With $nge 0$ And $nin mathbb{N}$



On solving, I got $$I_n =frac {(2n+1)pi}{2}$$



But, due to curiosity, I started investigating the family of integrals as




$$I_n(beta) =int_0^{frac {pi}{2}} left(frac {sin (2n+1)x}{sin x}right)^{beta} dx$$



On trying various values of $betagt 2$ and $betain mathbb{N}$, I conjectured that
$$I_n(beta) =c_{beta} frac{pi}{2}$$
where $c_{beta}$ denotes "Number of arrays of $beta$ integers in $-n$ to $n$ with sum $0$"




But, on trying a lot, I couldn't prove this statement. Also, I suppose that the statement could be proved with help of Dirichlet kernel, but I couldn't get the way out through it.



Any help and hints to prove/disprove the conjecture are greatly appreciated.







calculus integration trigonometry definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 3:12







Digamma

















asked Dec 29 '18 at 6:53









DigammaDigamma

6,1691439




6,1691439








  • 1




    @Masacroso I think $I_n$ is the integral of something alike Fejer kernel, so $sin((2n+1)x)$.
    – xbh
    Dec 29 '18 at 7:08










  • @Masacroso Edited!!!
    – Digamma
    Dec 29 '18 at 7:10










  • oeis.org/A201552
    – James Arathoon
    Dec 29 '18 at 12:21






  • 2




    See here: math.stackexchange.com/a/2885887/515527
    – Zacky
    Dec 29 '18 at 12:36










  • @James Arathoon The statement I guessed was from OEIS only and it also doesn't have any proofs.
    – Digamma
    Dec 29 '18 at 13:01














  • 1




    @Masacroso I think $I_n$ is the integral of something alike Fejer kernel, so $sin((2n+1)x)$.
    – xbh
    Dec 29 '18 at 7:08










  • @Masacroso Edited!!!
    – Digamma
    Dec 29 '18 at 7:10










  • oeis.org/A201552
    – James Arathoon
    Dec 29 '18 at 12:21






  • 2




    See here: math.stackexchange.com/a/2885887/515527
    – Zacky
    Dec 29 '18 at 12:36










  • @James Arathoon The statement I guessed was from OEIS only and it also doesn't have any proofs.
    – Digamma
    Dec 29 '18 at 13:01








1




1




@Masacroso I think $I_n$ is the integral of something alike Fejer kernel, so $sin((2n+1)x)$.
– xbh
Dec 29 '18 at 7:08




@Masacroso I think $I_n$ is the integral of something alike Fejer kernel, so $sin((2n+1)x)$.
– xbh
Dec 29 '18 at 7:08












@Masacroso Edited!!!
– Digamma
Dec 29 '18 at 7:10




@Masacroso Edited!!!
– Digamma
Dec 29 '18 at 7:10












oeis.org/A201552
– James Arathoon
Dec 29 '18 at 12:21




oeis.org/A201552
– James Arathoon
Dec 29 '18 at 12:21




2




2




See here: math.stackexchange.com/a/2885887/515527
– Zacky
Dec 29 '18 at 12:36




See here: math.stackexchange.com/a/2885887/515527
– Zacky
Dec 29 '18 at 12:36












@James Arathoon The statement I guessed was from OEIS only and it also doesn't have any proofs.
– Digamma
Dec 29 '18 at 13:01




@James Arathoon The statement I guessed was from OEIS only and it also doesn't have any proofs.
– Digamma
Dec 29 '18 at 13:01










2 Answers
2






active

oldest

votes


















6





+50









$defb{beta}$begin{align*}
newcommandcmt[1]{{smalltextrm{#1}}}
I_n(b) &= int_0^{pi/2}
left(frac{sin (2n+1)x}{sin x}right)^b dx \
&= frac 1 4 int_0^{2pi}
left(frac{sin (2n+1)x}{sin x}right)^b dx
& cmt{begin similar to user630708} \
&= frac{1}{4i} oint_gamma
left(frac{z^{4n+2}-1}{z^2-1}right)^b
frac{dz}{z^{2nb+1}}
& cmt{let $z=e^{ix}$} \
&= frac{1}{4i} oint_gamma
left(sum_{k=0}^{2n}z^{2k}right)^b
frac{dz}{z^{2nb+1}}
& cmt{partial sum of geometric series} \
&= left.frac{1}{4i} frac{2pi i}{(2nb)!}
left(frac{d}{dz}right)^{2nb}
left(sum_{k=0}^{2n}z^{2k}right)^b right|_{z=0}
& cmt{Cauchy integral formula} \
&= left.frac{pi}{2} frac{1}{(2nb)!}
left(frac{d}{dz}right)^{2nb}
sum_{sum x_k=b} frac{b!}{prod x_k!}
prod (z^{2k})^{x_k}
right|_{z=0}
& cmt{multinomial expansion, $k=0,1,ldots,2n$} \
&= left.frac{pi}{2} frac{1}{(2nb)!}
left(frac{d}{dz}right)^{2nb}
sum_{sum x_k=b} frac{b!}{prod x_k!}
z^{2sum k x_k}
right|_{z=0} \
&= frac{pi}{2}
sum_{sum x_k=b atop sum k x_k = nb}
frac{b!}{prod x_k!}
& cmt{only surviving terms have $sum k x_k = nb$} \
&= frac{pi}{2}
sum_{sum x_k=b atop sum (n-k) x_k = 0}
frac{b!}{prod x_k!}
end{align*}

In the last line note that
$sum_{k=0}^{2n} n x_k=nb$ and so
$sum_{k=0}^{2n} (n-k)x_k = 0$.
By inspection one can see that
$$sum_{sum_{k=0}^{2n} x_k=b atop sum_{k=0}^{2n} (n-k) x_k = 0}
frac{b!}{prod x_k!}
= textrm{number of arrays of $b$ integers in $-n,ldots,n$ with sum equal to 0,}$$

i.e.,
$$I_n(b) = frac{pi}{2} T(b,n),$$
where $T(b,n)$ is OEIS A201552, as pointed out by James Arathoon in the comments.
(On that page we also find an integral form of $T(b,n)$ which, after a simple substitution, gives $I_n(b) = frac{pi}{2} T(b,n)$.)






share|cite|improve this answer































    4














    This is easy using Residue Theory:



    Note that by symmetry $int_{0}^{pi/2}...dx=1/4int_{-pi}^{pi}…dx$ (use parity and a sub $y=pi-x$ to Show that).



    employing $z=e^{ix}$ we get



    $$
    4 I_{n,beta}=oint_C left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{dz}{i z^{2beta n+1}}
    $$



    where $C$ denotes the unit circle in the comlex plane. By the residue theorem (there is one pole inside the contour at $z=0$, using f.e. the geometric series you can Show that the Points $z=pm i$ are removable singularities). We have



    $$
    4 I_{n,beta}=2pi text{Res}(left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{1}{z^{2beta n+1}}
    ,z=0)
    $$



    Using $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$ we get



    $$
    (1-z^2)^{-beta}=frac{1}{2^{beta-1}}sum_{mgeq0}binom{m+beta-1}{beta-1}z^{2m}\
    (1-z^{4n+2})^{beta}=z^{2beta}sum_{kgeq0}(-1)^kbinom{beta}{k}z^{4k}
    $$



    which means that we have the condition $4k+2(m+beta)-2beta n-1=-1$ (since we are interested in $a_{-1}$ coefficent of the Laurent expansion) which essenitally kills one of the sums, and we end up with



    $$
    I_{n,beta}=frac{pi}{2^{beta}}sum_{mgeq0}(-1)^{beta n /2-(beta+m)/2}binom{m+beta-1}{beta-1}binom{beta}{beta n /2-(beta+m)/2}
    $$



    which is a finite sum, since the second binomial becomes zero when $m$ is large enough ($m> beta (n-1)$)






    share|cite|improve this answer























    • This seems cool, but where does the $beta neq 4$ exception come from? Is it from that line about how we "kill one of the sums"?
      – goblin
      Jan 1 at 23:46










    • Notice that the final sum is not necessarily real.
      – user26872
      Jan 2 at 0:37










    • Things seem to go off the rails with $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$, which is false for $beta>1$. It is true that $(beta-1)!(z^2-1)^{-beta}=((-2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$.
      – user26872
      Jan 5 at 20:45











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055608%2fconjecture-int-0-pi-2-left-frac-sin2n1x-sin-x-right-beta-dx-is%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6





    +50









    $defb{beta}$begin{align*}
    newcommandcmt[1]{{smalltextrm{#1}}}
    I_n(b) &= int_0^{pi/2}
    left(frac{sin (2n+1)x}{sin x}right)^b dx \
    &= frac 1 4 int_0^{2pi}
    left(frac{sin (2n+1)x}{sin x}right)^b dx
    & cmt{begin similar to user630708} \
    &= frac{1}{4i} oint_gamma
    left(frac{z^{4n+2}-1}{z^2-1}right)^b
    frac{dz}{z^{2nb+1}}
    & cmt{let $z=e^{ix}$} \
    &= frac{1}{4i} oint_gamma
    left(sum_{k=0}^{2n}z^{2k}right)^b
    frac{dz}{z^{2nb+1}}
    & cmt{partial sum of geometric series} \
    &= left.frac{1}{4i} frac{2pi i}{(2nb)!}
    left(frac{d}{dz}right)^{2nb}
    left(sum_{k=0}^{2n}z^{2k}right)^b right|_{z=0}
    & cmt{Cauchy integral formula} \
    &= left.frac{pi}{2} frac{1}{(2nb)!}
    left(frac{d}{dz}right)^{2nb}
    sum_{sum x_k=b} frac{b!}{prod x_k!}
    prod (z^{2k})^{x_k}
    right|_{z=0}
    & cmt{multinomial expansion, $k=0,1,ldots,2n$} \
    &= left.frac{pi}{2} frac{1}{(2nb)!}
    left(frac{d}{dz}right)^{2nb}
    sum_{sum x_k=b} frac{b!}{prod x_k!}
    z^{2sum k x_k}
    right|_{z=0} \
    &= frac{pi}{2}
    sum_{sum x_k=b atop sum k x_k = nb}
    frac{b!}{prod x_k!}
    & cmt{only surviving terms have $sum k x_k = nb$} \
    &= frac{pi}{2}
    sum_{sum x_k=b atop sum (n-k) x_k = 0}
    frac{b!}{prod x_k!}
    end{align*}

    In the last line note that
    $sum_{k=0}^{2n} n x_k=nb$ and so
    $sum_{k=0}^{2n} (n-k)x_k = 0$.
    By inspection one can see that
    $$sum_{sum_{k=0}^{2n} x_k=b atop sum_{k=0}^{2n} (n-k) x_k = 0}
    frac{b!}{prod x_k!}
    = textrm{number of arrays of $b$ integers in $-n,ldots,n$ with sum equal to 0,}$$

    i.e.,
    $$I_n(b) = frac{pi}{2} T(b,n),$$
    where $T(b,n)$ is OEIS A201552, as pointed out by James Arathoon in the comments.
    (On that page we also find an integral form of $T(b,n)$ which, after a simple substitution, gives $I_n(b) = frac{pi}{2} T(b,n)$.)






    share|cite|improve this answer




























      6





      +50









      $defb{beta}$begin{align*}
      newcommandcmt[1]{{smalltextrm{#1}}}
      I_n(b) &= int_0^{pi/2}
      left(frac{sin (2n+1)x}{sin x}right)^b dx \
      &= frac 1 4 int_0^{2pi}
      left(frac{sin (2n+1)x}{sin x}right)^b dx
      & cmt{begin similar to user630708} \
      &= frac{1}{4i} oint_gamma
      left(frac{z^{4n+2}-1}{z^2-1}right)^b
      frac{dz}{z^{2nb+1}}
      & cmt{let $z=e^{ix}$} \
      &= frac{1}{4i} oint_gamma
      left(sum_{k=0}^{2n}z^{2k}right)^b
      frac{dz}{z^{2nb+1}}
      & cmt{partial sum of geometric series} \
      &= left.frac{1}{4i} frac{2pi i}{(2nb)!}
      left(frac{d}{dz}right)^{2nb}
      left(sum_{k=0}^{2n}z^{2k}right)^b right|_{z=0}
      & cmt{Cauchy integral formula} \
      &= left.frac{pi}{2} frac{1}{(2nb)!}
      left(frac{d}{dz}right)^{2nb}
      sum_{sum x_k=b} frac{b!}{prod x_k!}
      prod (z^{2k})^{x_k}
      right|_{z=0}
      & cmt{multinomial expansion, $k=0,1,ldots,2n$} \
      &= left.frac{pi}{2} frac{1}{(2nb)!}
      left(frac{d}{dz}right)^{2nb}
      sum_{sum x_k=b} frac{b!}{prod x_k!}
      z^{2sum k x_k}
      right|_{z=0} \
      &= frac{pi}{2}
      sum_{sum x_k=b atop sum k x_k = nb}
      frac{b!}{prod x_k!}
      & cmt{only surviving terms have $sum k x_k = nb$} \
      &= frac{pi}{2}
      sum_{sum x_k=b atop sum (n-k) x_k = 0}
      frac{b!}{prod x_k!}
      end{align*}

      In the last line note that
      $sum_{k=0}^{2n} n x_k=nb$ and so
      $sum_{k=0}^{2n} (n-k)x_k = 0$.
      By inspection one can see that
      $$sum_{sum_{k=0}^{2n} x_k=b atop sum_{k=0}^{2n} (n-k) x_k = 0}
      frac{b!}{prod x_k!}
      = textrm{number of arrays of $b$ integers in $-n,ldots,n$ with sum equal to 0,}$$

      i.e.,
      $$I_n(b) = frac{pi}{2} T(b,n),$$
      where $T(b,n)$ is OEIS A201552, as pointed out by James Arathoon in the comments.
      (On that page we also find an integral form of $T(b,n)$ which, after a simple substitution, gives $I_n(b) = frac{pi}{2} T(b,n)$.)






      share|cite|improve this answer


























        6





        +50







        6





        +50



        6




        +50




        $defb{beta}$begin{align*}
        newcommandcmt[1]{{smalltextrm{#1}}}
        I_n(b) &= int_0^{pi/2}
        left(frac{sin (2n+1)x}{sin x}right)^b dx \
        &= frac 1 4 int_0^{2pi}
        left(frac{sin (2n+1)x}{sin x}right)^b dx
        & cmt{begin similar to user630708} \
        &= frac{1}{4i} oint_gamma
        left(frac{z^{4n+2}-1}{z^2-1}right)^b
        frac{dz}{z^{2nb+1}}
        & cmt{let $z=e^{ix}$} \
        &= frac{1}{4i} oint_gamma
        left(sum_{k=0}^{2n}z^{2k}right)^b
        frac{dz}{z^{2nb+1}}
        & cmt{partial sum of geometric series} \
        &= left.frac{1}{4i} frac{2pi i}{(2nb)!}
        left(frac{d}{dz}right)^{2nb}
        left(sum_{k=0}^{2n}z^{2k}right)^b right|_{z=0}
        & cmt{Cauchy integral formula} \
        &= left.frac{pi}{2} frac{1}{(2nb)!}
        left(frac{d}{dz}right)^{2nb}
        sum_{sum x_k=b} frac{b!}{prod x_k!}
        prod (z^{2k})^{x_k}
        right|_{z=0}
        & cmt{multinomial expansion, $k=0,1,ldots,2n$} \
        &= left.frac{pi}{2} frac{1}{(2nb)!}
        left(frac{d}{dz}right)^{2nb}
        sum_{sum x_k=b} frac{b!}{prod x_k!}
        z^{2sum k x_k}
        right|_{z=0} \
        &= frac{pi}{2}
        sum_{sum x_k=b atop sum k x_k = nb}
        frac{b!}{prod x_k!}
        & cmt{only surviving terms have $sum k x_k = nb$} \
        &= frac{pi}{2}
        sum_{sum x_k=b atop sum (n-k) x_k = 0}
        frac{b!}{prod x_k!}
        end{align*}

        In the last line note that
        $sum_{k=0}^{2n} n x_k=nb$ and so
        $sum_{k=0}^{2n} (n-k)x_k = 0$.
        By inspection one can see that
        $$sum_{sum_{k=0}^{2n} x_k=b atop sum_{k=0}^{2n} (n-k) x_k = 0}
        frac{b!}{prod x_k!}
        = textrm{number of arrays of $b$ integers in $-n,ldots,n$ with sum equal to 0,}$$

        i.e.,
        $$I_n(b) = frac{pi}{2} T(b,n),$$
        where $T(b,n)$ is OEIS A201552, as pointed out by James Arathoon in the comments.
        (On that page we also find an integral form of $T(b,n)$ which, after a simple substitution, gives $I_n(b) = frac{pi}{2} T(b,n)$.)






        share|cite|improve this answer














        $defb{beta}$begin{align*}
        newcommandcmt[1]{{smalltextrm{#1}}}
        I_n(b) &= int_0^{pi/2}
        left(frac{sin (2n+1)x}{sin x}right)^b dx \
        &= frac 1 4 int_0^{2pi}
        left(frac{sin (2n+1)x}{sin x}right)^b dx
        & cmt{begin similar to user630708} \
        &= frac{1}{4i} oint_gamma
        left(frac{z^{4n+2}-1}{z^2-1}right)^b
        frac{dz}{z^{2nb+1}}
        & cmt{let $z=e^{ix}$} \
        &= frac{1}{4i} oint_gamma
        left(sum_{k=0}^{2n}z^{2k}right)^b
        frac{dz}{z^{2nb+1}}
        & cmt{partial sum of geometric series} \
        &= left.frac{1}{4i} frac{2pi i}{(2nb)!}
        left(frac{d}{dz}right)^{2nb}
        left(sum_{k=0}^{2n}z^{2k}right)^b right|_{z=0}
        & cmt{Cauchy integral formula} \
        &= left.frac{pi}{2} frac{1}{(2nb)!}
        left(frac{d}{dz}right)^{2nb}
        sum_{sum x_k=b} frac{b!}{prod x_k!}
        prod (z^{2k})^{x_k}
        right|_{z=0}
        & cmt{multinomial expansion, $k=0,1,ldots,2n$} \
        &= left.frac{pi}{2} frac{1}{(2nb)!}
        left(frac{d}{dz}right)^{2nb}
        sum_{sum x_k=b} frac{b!}{prod x_k!}
        z^{2sum k x_k}
        right|_{z=0} \
        &= frac{pi}{2}
        sum_{sum x_k=b atop sum k x_k = nb}
        frac{b!}{prod x_k!}
        & cmt{only surviving terms have $sum k x_k = nb$} \
        &= frac{pi}{2}
        sum_{sum x_k=b atop sum (n-k) x_k = 0}
        frac{b!}{prod x_k!}
        end{align*}

        In the last line note that
        $sum_{k=0}^{2n} n x_k=nb$ and so
        $sum_{k=0}^{2n} (n-k)x_k = 0$.
        By inspection one can see that
        $$sum_{sum_{k=0}^{2n} x_k=b atop sum_{k=0}^{2n} (n-k) x_k = 0}
        frac{b!}{prod x_k!}
        = textrm{number of arrays of $b$ integers in $-n,ldots,n$ with sum equal to 0,}$$

        i.e.,
        $$I_n(b) = frac{pi}{2} T(b,n),$$
        where $T(b,n)$ is OEIS A201552, as pointed out by James Arathoon in the comments.
        (On that page we also find an integral form of $T(b,n)$ which, after a simple substitution, gives $I_n(b) = frac{pi}{2} T(b,n)$.)







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 5 at 20:21

























        answered Jan 1 at 23:41









        user26872user26872

        14.9k22773




        14.9k22773























            4














            This is easy using Residue Theory:



            Note that by symmetry $int_{0}^{pi/2}...dx=1/4int_{-pi}^{pi}…dx$ (use parity and a sub $y=pi-x$ to Show that).



            employing $z=e^{ix}$ we get



            $$
            4 I_{n,beta}=oint_C left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{dz}{i z^{2beta n+1}}
            $$



            where $C$ denotes the unit circle in the comlex plane. By the residue theorem (there is one pole inside the contour at $z=0$, using f.e. the geometric series you can Show that the Points $z=pm i$ are removable singularities). We have



            $$
            4 I_{n,beta}=2pi text{Res}(left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{1}{z^{2beta n+1}}
            ,z=0)
            $$



            Using $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$ we get



            $$
            (1-z^2)^{-beta}=frac{1}{2^{beta-1}}sum_{mgeq0}binom{m+beta-1}{beta-1}z^{2m}\
            (1-z^{4n+2})^{beta}=z^{2beta}sum_{kgeq0}(-1)^kbinom{beta}{k}z^{4k}
            $$



            which means that we have the condition $4k+2(m+beta)-2beta n-1=-1$ (since we are interested in $a_{-1}$ coefficent of the Laurent expansion) which essenitally kills one of the sums, and we end up with



            $$
            I_{n,beta}=frac{pi}{2^{beta}}sum_{mgeq0}(-1)^{beta n /2-(beta+m)/2}binom{m+beta-1}{beta-1}binom{beta}{beta n /2-(beta+m)/2}
            $$



            which is a finite sum, since the second binomial becomes zero when $m$ is large enough ($m> beta (n-1)$)






            share|cite|improve this answer























            • This seems cool, but where does the $beta neq 4$ exception come from? Is it from that line about how we "kill one of the sums"?
              – goblin
              Jan 1 at 23:46










            • Notice that the final sum is not necessarily real.
              – user26872
              Jan 2 at 0:37










            • Things seem to go off the rails with $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$, which is false for $beta>1$. It is true that $(beta-1)!(z^2-1)^{-beta}=((-2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$.
              – user26872
              Jan 5 at 20:45
















            4














            This is easy using Residue Theory:



            Note that by symmetry $int_{0}^{pi/2}...dx=1/4int_{-pi}^{pi}…dx$ (use parity and a sub $y=pi-x$ to Show that).



            employing $z=e^{ix}$ we get



            $$
            4 I_{n,beta}=oint_C left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{dz}{i z^{2beta n+1}}
            $$



            where $C$ denotes the unit circle in the comlex plane. By the residue theorem (there is one pole inside the contour at $z=0$, using f.e. the geometric series you can Show that the Points $z=pm i$ are removable singularities). We have



            $$
            4 I_{n,beta}=2pi text{Res}(left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{1}{z^{2beta n+1}}
            ,z=0)
            $$



            Using $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$ we get



            $$
            (1-z^2)^{-beta}=frac{1}{2^{beta-1}}sum_{mgeq0}binom{m+beta-1}{beta-1}z^{2m}\
            (1-z^{4n+2})^{beta}=z^{2beta}sum_{kgeq0}(-1)^kbinom{beta}{k}z^{4k}
            $$



            which means that we have the condition $4k+2(m+beta)-2beta n-1=-1$ (since we are interested in $a_{-1}$ coefficent of the Laurent expansion) which essenitally kills one of the sums, and we end up with



            $$
            I_{n,beta}=frac{pi}{2^{beta}}sum_{mgeq0}(-1)^{beta n /2-(beta+m)/2}binom{m+beta-1}{beta-1}binom{beta}{beta n /2-(beta+m)/2}
            $$



            which is a finite sum, since the second binomial becomes zero when $m$ is large enough ($m> beta (n-1)$)






            share|cite|improve this answer























            • This seems cool, but where does the $beta neq 4$ exception come from? Is it from that line about how we "kill one of the sums"?
              – goblin
              Jan 1 at 23:46










            • Notice that the final sum is not necessarily real.
              – user26872
              Jan 2 at 0:37










            • Things seem to go off the rails with $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$, which is false for $beta>1$. It is true that $(beta-1)!(z^2-1)^{-beta}=((-2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$.
              – user26872
              Jan 5 at 20:45














            4












            4








            4






            This is easy using Residue Theory:



            Note that by symmetry $int_{0}^{pi/2}...dx=1/4int_{-pi}^{pi}…dx$ (use parity and a sub $y=pi-x$ to Show that).



            employing $z=e^{ix}$ we get



            $$
            4 I_{n,beta}=oint_C left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{dz}{i z^{2beta n+1}}
            $$



            where $C$ denotes the unit circle in the comlex plane. By the residue theorem (there is one pole inside the contour at $z=0$, using f.e. the geometric series you can Show that the Points $z=pm i$ are removable singularities). We have



            $$
            4 I_{n,beta}=2pi text{Res}(left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{1}{z^{2beta n+1}}
            ,z=0)
            $$



            Using $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$ we get



            $$
            (1-z^2)^{-beta}=frac{1}{2^{beta-1}}sum_{mgeq0}binom{m+beta-1}{beta-1}z^{2m}\
            (1-z^{4n+2})^{beta}=z^{2beta}sum_{kgeq0}(-1)^kbinom{beta}{k}z^{4k}
            $$



            which means that we have the condition $4k+2(m+beta)-2beta n-1=-1$ (since we are interested in $a_{-1}$ coefficent of the Laurent expansion) which essenitally kills one of the sums, and we end up with



            $$
            I_{n,beta}=frac{pi}{2^{beta}}sum_{mgeq0}(-1)^{beta n /2-(beta+m)/2}binom{m+beta-1}{beta-1}binom{beta}{beta n /2-(beta+m)/2}
            $$



            which is a finite sum, since the second binomial becomes zero when $m$ is large enough ($m> beta (n-1)$)






            share|cite|improve this answer














            This is easy using Residue Theory:



            Note that by symmetry $int_{0}^{pi/2}...dx=1/4int_{-pi}^{pi}…dx$ (use parity and a sub $y=pi-x$ to Show that).



            employing $z=e^{ix}$ we get



            $$
            4 I_{n,beta}=oint_C left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{dz}{i z^{2beta n+1}}
            $$



            where $C$ denotes the unit circle in the comlex plane. By the residue theorem (there is one pole inside the contour at $z=0$, using f.e. the geometric series you can Show that the Points $z=pm i$ are removable singularities). We have



            $$
            4 I_{n,beta}=2pi text{Res}(left[frac{z^{4n+2}-1}{z^2-1}right]^{beta}frac{1}{z^{2beta n+1}}
            ,z=0)
            $$



            Using $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$ we get



            $$
            (1-z^2)^{-beta}=frac{1}{2^{beta-1}}sum_{mgeq0}binom{m+beta-1}{beta-1}z^{2m}\
            (1-z^{4n+2})^{beta}=z^{2beta}sum_{kgeq0}(-1)^kbinom{beta}{k}z^{4k}
            $$



            which means that we have the condition $4k+2(m+beta)-2beta n-1=-1$ (since we are interested in $a_{-1}$ coefficent of the Laurent expansion) which essenitally kills one of the sums, and we end up with



            $$
            I_{n,beta}=frac{pi}{2^{beta}}sum_{mgeq0}(-1)^{beta n /2-(beta+m)/2}binom{m+beta-1}{beta-1}binom{beta}{beta n /2-(beta+m)/2}
            $$



            which is a finite sum, since the second binomial becomes zero when $m$ is large enough ($m> beta (n-1)$)







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 31 '18 at 14:50

























            answered Dec 31 '18 at 14:41









            user630708user630708

            492




            492












            • This seems cool, but where does the $beta neq 4$ exception come from? Is it from that line about how we "kill one of the sums"?
              – goblin
              Jan 1 at 23:46










            • Notice that the final sum is not necessarily real.
              – user26872
              Jan 2 at 0:37










            • Things seem to go off the rails with $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$, which is false for $beta>1$. It is true that $(beta-1)!(z^2-1)^{-beta}=((-2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$.
              – user26872
              Jan 5 at 20:45


















            • This seems cool, but where does the $beta neq 4$ exception come from? Is it from that line about how we "kill one of the sums"?
              – goblin
              Jan 1 at 23:46










            • Notice that the final sum is not necessarily real.
              – user26872
              Jan 2 at 0:37










            • Things seem to go off the rails with $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$, which is false for $beta>1$. It is true that $(beta-1)!(z^2-1)^{-beta}=((-2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$.
              – user26872
              Jan 5 at 20:45
















            This seems cool, but where does the $beta neq 4$ exception come from? Is it from that line about how we "kill one of the sums"?
            – goblin
            Jan 1 at 23:46




            This seems cool, but where does the $beta neq 4$ exception come from? Is it from that line about how we "kill one of the sums"?
            – goblin
            Jan 1 at 23:46












            Notice that the final sum is not necessarily real.
            – user26872
            Jan 2 at 0:37




            Notice that the final sum is not necessarily real.
            – user26872
            Jan 2 at 0:37












            Things seem to go off the rails with $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$, which is false for $beta>1$. It is true that $(beta-1)!(z^2-1)^{-beta}=((-2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$.
            – user26872
            Jan 5 at 20:45




            Things seem to go off the rails with $beta!(z^2-1)^{-beta}=((2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$, which is false for $beta>1$. It is true that $(beta-1)!(z^2-1)^{-beta}=((-2z)^{-1}partial_z)^{beta-1}(z^2-1)^{-1}$.
            – user26872
            Jan 5 at 20:45


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055608%2fconjecture-int-0-pi-2-left-frac-sin2n1x-sin-x-right-beta-dx-is%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            SQL update select statement

            'app-layout' is not a known element: how to share Component with different Modules