Maximum of a two variable function within a defined domain
The function is this: $xye^{frac{(x+y^2)}{4}}$ in the domain $x+ygeq1, ygeq0$
I have done the partial derivatives to get the stationary point $(0,0)$ but it is not a maximum, it is a saddle point. I graphed the domain and it is the whole plane from $(1,0)$.
Attempted solution
The questions says that there is a maximum somewhere in the domain; I must find it.
Since $ygeq0$ I attempted to evaluate the function in $f(x,0)=0$ which gives $x=0$ and therefore gives $f=0$, plus correct me if I am wrong but $x=0$ is out of the domain. I did the same for $f(1,y)=0$ and gives $y=0$. But neither $(1,0)$ nor $(0,1)$ seem as a maximum point to me. Then I, ignorantly and with my poor mathematical skills, improvised and evaluated when $f(x,1-x)$ and $f(1-y,y)$ because this is implicitly what the domain restriction says $(x+ygeq1)$ and somehow I got a point in $(1,1)$ if that is even possible. I tried to prove it with the determinant of the hessian matrix but calculating the second partial derivatives and then the determinant is way too complicated and long for an exam question.
Is $(1,1)$ the point which maximizes the function in this domain?
calculus multivariable-calculus optimization maxima-minima hessian-matrix
add a comment |
The function is this: $xye^{frac{(x+y^2)}{4}}$ in the domain $x+ygeq1, ygeq0$
I have done the partial derivatives to get the stationary point $(0,0)$ but it is not a maximum, it is a saddle point. I graphed the domain and it is the whole plane from $(1,0)$.
Attempted solution
The questions says that there is a maximum somewhere in the domain; I must find it.
Since $ygeq0$ I attempted to evaluate the function in $f(x,0)=0$ which gives $x=0$ and therefore gives $f=0$, plus correct me if I am wrong but $x=0$ is out of the domain. I did the same for $f(1,y)=0$ and gives $y=0$. But neither $(1,0)$ nor $(0,1)$ seem as a maximum point to me. Then I, ignorantly and with my poor mathematical skills, improvised and evaluated when $f(x,1-x)$ and $f(1-y,y)$ because this is implicitly what the domain restriction says $(x+ygeq1)$ and somehow I got a point in $(1,1)$ if that is even possible. I tried to prove it with the determinant of the hessian matrix but calculating the second partial derivatives and then the determinant is way too complicated and long for an exam question.
Is $(1,1)$ the point which maximizes the function in this domain?
calculus multivariable-calculus optimization maxima-minima hessian-matrix
add a comment |
The function is this: $xye^{frac{(x+y^2)}{4}}$ in the domain $x+ygeq1, ygeq0$
I have done the partial derivatives to get the stationary point $(0,0)$ but it is not a maximum, it is a saddle point. I graphed the domain and it is the whole plane from $(1,0)$.
Attempted solution
The questions says that there is a maximum somewhere in the domain; I must find it.
Since $ygeq0$ I attempted to evaluate the function in $f(x,0)=0$ which gives $x=0$ and therefore gives $f=0$, plus correct me if I am wrong but $x=0$ is out of the domain. I did the same for $f(1,y)=0$ and gives $y=0$. But neither $(1,0)$ nor $(0,1)$ seem as a maximum point to me. Then I, ignorantly and with my poor mathematical skills, improvised and evaluated when $f(x,1-x)$ and $f(1-y,y)$ because this is implicitly what the domain restriction says $(x+ygeq1)$ and somehow I got a point in $(1,1)$ if that is even possible. I tried to prove it with the determinant of the hessian matrix but calculating the second partial derivatives and then the determinant is way too complicated and long for an exam question.
Is $(1,1)$ the point which maximizes the function in this domain?
calculus multivariable-calculus optimization maxima-minima hessian-matrix
The function is this: $xye^{frac{(x+y^2)}{4}}$ in the domain $x+ygeq1, ygeq0$
I have done the partial derivatives to get the stationary point $(0,0)$ but it is not a maximum, it is a saddle point. I graphed the domain and it is the whole plane from $(1,0)$.
Attempted solution
The questions says that there is a maximum somewhere in the domain; I must find it.
Since $ygeq0$ I attempted to evaluate the function in $f(x,0)=0$ which gives $x=0$ and therefore gives $f=0$, plus correct me if I am wrong but $x=0$ is out of the domain. I did the same for $f(1,y)=0$ and gives $y=0$. But neither $(1,0)$ nor $(0,1)$ seem as a maximum point to me. Then I, ignorantly and with my poor mathematical skills, improvised and evaluated when $f(x,1-x)$ and $f(1-y,y)$ because this is implicitly what the domain restriction says $(x+ygeq1)$ and somehow I got a point in $(1,1)$ if that is even possible. I tried to prove it with the determinant of the hessian matrix but calculating the second partial derivatives and then the determinant is way too complicated and long for an exam question.
Is $(1,1)$ the point which maximizes the function in this domain?
calculus multivariable-calculus optimization maxima-minima hessian-matrix
calculus multivariable-calculus optimization maxima-minima hessian-matrix
edited Nov 21 '18 at 6:13
Yadati Kiran
1,693619
1,693619
asked Nov 21 '18 at 3:38
Escribas
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007225%2fmaximum-of-a-two-variable-function-within-a-defined-domain%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007225%2fmaximum-of-a-two-variable-function-within-a-defined-domain%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown