Contour integration - complex analysis
I am trying to solve the following integral using a contour (large semi-circle connected to smaller semi-circle in the upper-half plane):
$$int_0^{infty} frac{log^4(x)}{1+x^2} dx.$$
I have split the contour into 4 parts - the large semi-circle, the small semi-circle, the part on the negative real axis and the part on the positive real axis.
The integral of the function over the contour is $2pi i sum Res(f)$, which is $pi^5$. The function has poles: $i$ and $-i$, each of order $1$, but $i$ is the only pole contained in the contour.
The integral over the large semi-circle is $0$ as the large radius approaches infinity and the integral over the small semi-circle is $0$ as the small radius approaches $0$.
I take the real part of both sides and the following is left:
$$
pi^5 = 2int_0^{infty} frac{log^4(x)}{1+x^2} dx
+ int_{-infty}^0 frac{-6pi^2log^2(x) + pi^4}{1+x^2} dx
$$
My final answer is $5pi^5/8$, but the correct answer is $5pi^5/32$.
Any suggestions? Thank you!
integration complex-analysis contour-integration complex-integration
add a comment |
I am trying to solve the following integral using a contour (large semi-circle connected to smaller semi-circle in the upper-half plane):
$$int_0^{infty} frac{log^4(x)}{1+x^2} dx.$$
I have split the contour into 4 parts - the large semi-circle, the small semi-circle, the part on the negative real axis and the part on the positive real axis.
The integral of the function over the contour is $2pi i sum Res(f)$, which is $pi^5$. The function has poles: $i$ and $-i$, each of order $1$, but $i$ is the only pole contained in the contour.
The integral over the large semi-circle is $0$ as the large radius approaches infinity and the integral over the small semi-circle is $0$ as the small radius approaches $0$.
I take the real part of both sides and the following is left:
$$
pi^5 = 2int_0^{infty} frac{log^4(x)}{1+x^2} dx
+ int_{-infty}^0 frac{-6pi^2log^2(x) + pi^4}{1+x^2} dx
$$
My final answer is $5pi^5/8$, but the correct answer is $5pi^5/32$.
Any suggestions? Thank you!
integration complex-analysis contour-integration complex-integration
1
In you argument how is $log, x$ defined for $x<0$?
– Kavi Rama Murthy
Nov 21 '18 at 4:56
for $ log(z)$, I have chosen the branch $frac{-pi}{2}$ $leq$ arg(z) $leq$ $frac{3pi}{2}$.
– math_b
Nov 21 '18 at 13:10
On the contour, when x $lt$ 0, it is just the line on the negative real axis (from $- R$ to $- r$), where $R$ is the radius of the larger semi-circle and $r$ is the radius of smaller semi-circle.
– math_b
Nov 21 '18 at 13:12
The following MSE link presents a procedure for higher powers of the logarithm.
– Marko Riedel
Nov 21 '18 at 13:50
add a comment |
I am trying to solve the following integral using a contour (large semi-circle connected to smaller semi-circle in the upper-half plane):
$$int_0^{infty} frac{log^4(x)}{1+x^2} dx.$$
I have split the contour into 4 parts - the large semi-circle, the small semi-circle, the part on the negative real axis and the part on the positive real axis.
The integral of the function over the contour is $2pi i sum Res(f)$, which is $pi^5$. The function has poles: $i$ and $-i$, each of order $1$, but $i$ is the only pole contained in the contour.
The integral over the large semi-circle is $0$ as the large radius approaches infinity and the integral over the small semi-circle is $0$ as the small radius approaches $0$.
I take the real part of both sides and the following is left:
$$
pi^5 = 2int_0^{infty} frac{log^4(x)}{1+x^2} dx
+ int_{-infty}^0 frac{-6pi^2log^2(x) + pi^4}{1+x^2} dx
$$
My final answer is $5pi^5/8$, but the correct answer is $5pi^5/32$.
Any suggestions? Thank you!
integration complex-analysis contour-integration complex-integration
I am trying to solve the following integral using a contour (large semi-circle connected to smaller semi-circle in the upper-half plane):
$$int_0^{infty} frac{log^4(x)}{1+x^2} dx.$$
I have split the contour into 4 parts - the large semi-circle, the small semi-circle, the part on the negative real axis and the part on the positive real axis.
The integral of the function over the contour is $2pi i sum Res(f)$, which is $pi^5$. The function has poles: $i$ and $-i$, each of order $1$, but $i$ is the only pole contained in the contour.
The integral over the large semi-circle is $0$ as the large radius approaches infinity and the integral over the small semi-circle is $0$ as the small radius approaches $0$.
I take the real part of both sides and the following is left:
$$
pi^5 = 2int_0^{infty} frac{log^4(x)}{1+x^2} dx
+ int_{-infty}^0 frac{-6pi^2log^2(x) + pi^4}{1+x^2} dx
$$
My final answer is $5pi^5/8$, but the correct answer is $5pi^5/32$.
Any suggestions? Thank you!
integration complex-analysis contour-integration complex-integration
integration complex-analysis contour-integration complex-integration
edited Nov 21 '18 at 5:00
gt6989b
33k22452
33k22452
asked Nov 21 '18 at 4:27
math_b
84
84
1
In you argument how is $log, x$ defined for $x<0$?
– Kavi Rama Murthy
Nov 21 '18 at 4:56
for $ log(z)$, I have chosen the branch $frac{-pi}{2}$ $leq$ arg(z) $leq$ $frac{3pi}{2}$.
– math_b
Nov 21 '18 at 13:10
On the contour, when x $lt$ 0, it is just the line on the negative real axis (from $- R$ to $- r$), where $R$ is the radius of the larger semi-circle and $r$ is the radius of smaller semi-circle.
– math_b
Nov 21 '18 at 13:12
The following MSE link presents a procedure for higher powers of the logarithm.
– Marko Riedel
Nov 21 '18 at 13:50
add a comment |
1
In you argument how is $log, x$ defined for $x<0$?
– Kavi Rama Murthy
Nov 21 '18 at 4:56
for $ log(z)$, I have chosen the branch $frac{-pi}{2}$ $leq$ arg(z) $leq$ $frac{3pi}{2}$.
– math_b
Nov 21 '18 at 13:10
On the contour, when x $lt$ 0, it is just the line on the negative real axis (from $- R$ to $- r$), where $R$ is the radius of the larger semi-circle and $r$ is the radius of smaller semi-circle.
– math_b
Nov 21 '18 at 13:12
The following MSE link presents a procedure for higher powers of the logarithm.
– Marko Riedel
Nov 21 '18 at 13:50
1
1
In you argument how is $log, x$ defined for $x<0$?
– Kavi Rama Murthy
Nov 21 '18 at 4:56
In you argument how is $log, x$ defined for $x<0$?
– Kavi Rama Murthy
Nov 21 '18 at 4:56
for $ log(z)$, I have chosen the branch $frac{-pi}{2}$ $leq$ arg(z) $leq$ $frac{3pi}{2}$.
– math_b
Nov 21 '18 at 13:10
for $ log(z)$, I have chosen the branch $frac{-pi}{2}$ $leq$ arg(z) $leq$ $frac{3pi}{2}$.
– math_b
Nov 21 '18 at 13:10
On the contour, when x $lt$ 0, it is just the line on the negative real axis (from $- R$ to $- r$), where $R$ is the radius of the larger semi-circle and $r$ is the radius of smaller semi-circle.
– math_b
Nov 21 '18 at 13:12
On the contour, when x $lt$ 0, it is just the line on the negative real axis (from $- R$ to $- r$), where $R$ is the radius of the larger semi-circle and $r$ is the radius of smaller semi-circle.
– math_b
Nov 21 '18 at 13:12
The following MSE link presents a procedure for higher powers of the logarithm.
– Marko Riedel
Nov 21 '18 at 13:50
The following MSE link presents a procedure for higher powers of the logarithm.
– Marko Riedel
Nov 21 '18 at 13:50
add a comment |
1 Answer
1
active
oldest
votes
Feynman isn't necessarily antangonistic to contour integration. They sometimes work together well.
$$J=int^infty_0frac{log^4(x)}{1+x^2}dx=I^{(4)}(0)$$
where
$$I(a)=int^infty_{0}frac{x^{a}}{1+x^2}dx$$ with $-1<a<1$.
Take $C$ as a keyhole contour, centered at the origin, avoiding the positive real axis.
Let $f(z)=z^a(1+z^2)^{-1}$ with branch cut on the positive real axis, implying $z^aequiv exp(a(ln|z|+iarg z))$ where $arg zin[0,2pi)$.
Firstly, by residue theorem,
$$oint_C f(z)dz=2pi ibigg(operatorname*{Res}_{z=i}f(z)+operatorname*{Res}_{z=-i}f(z)bigg)$$
We have
$$operatorname*{Res}_{z=i}f(z)=frac{exp(a(ln|i|+iarg i))}{i+i}=frac{e^{pi ia/2}}{2i}$$
$$operatorname*{Res}_{z=-i}f(z)=frac{exp(a(ln|-i|+iarg -i))}{-i-i}=-frac{e^{3pi ia/2}}{2i}$$
Thus,
$$oint_C f(z)dz=pi(e^{pi ia/2}-e^{3pi ia/2})$$
On the other hand,
$$oint f(z)dz=K_1+K_2+K_3+K_4$$
where
$$
K_1=lim_{Rtoinfty}int^{2pi}_0 f(Re^{it})iRe^{it}dt
=lim_{Rtoinfty}2pi f(Re^{ic})iRe^{ic}=0 qquad{cin[0,2pi]}$$
$$K_2=lim_{rto0^+}int_{2pi}^0 f(re^{it})ire^{it}dt
=lim_{rto0^+}2pi f(re^{ic})ire^{ic}=0 qquad{cin[0,2pi]}$$
$$K_3=int^infty_0 f(te^{i0})dt=int^infty_0frac{e^{i0}t^a}{t^2+1}dt=I$$
$$K_4=int_infty^0 f(te^{i2pi})dt=-int^infty_0frac{e^{2pi ia}t^a}{t^2+1}dt=-e^{2pi ia}I$$
For $K_1,K_2$, please respectively note the asymptotics $f(z)sim z^{a}$ for small $|z|$ and $f(z)=O(z^{a-2})$ for large $|z|$.
Therefore,
$$I-e^{2pi ia}I=pi(e^{pi ia/2}-e^{3pi ia/2})$$
$$implies I=pifrac{e^{pi ia/2}-e^{3pi ia/2}}{1-e^{2pi ia}}
=pifrac{e^{-pi ia/2}-e^{pi ia/2}}{e^{-pi i a}-e^{pi ia}}
=pifrac{sin(pi a/2)}{sin(pi a)}
=frac{pi}2secleft(frac{pi a}2right)
$$
Let $T=tan(pi a/2)$, $S=sec(pi a/2)$.
$$I^{(4)}(a)=frac{pi}2frac{pi^4(T^4+18S^2T^2+5S^4)}{16}$$
Hence,
$$J=I^{(4)}(0)=frac{pi}2frac{pi^4(0+0+5cdot 1)}{16}=color{red}{frac{5pi^5}{32}}$$
The tedious differentiation is done by calculator. :)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007258%2fcontour-integration-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Feynman isn't necessarily antangonistic to contour integration. They sometimes work together well.
$$J=int^infty_0frac{log^4(x)}{1+x^2}dx=I^{(4)}(0)$$
where
$$I(a)=int^infty_{0}frac{x^{a}}{1+x^2}dx$$ with $-1<a<1$.
Take $C$ as a keyhole contour, centered at the origin, avoiding the positive real axis.
Let $f(z)=z^a(1+z^2)^{-1}$ with branch cut on the positive real axis, implying $z^aequiv exp(a(ln|z|+iarg z))$ where $arg zin[0,2pi)$.
Firstly, by residue theorem,
$$oint_C f(z)dz=2pi ibigg(operatorname*{Res}_{z=i}f(z)+operatorname*{Res}_{z=-i}f(z)bigg)$$
We have
$$operatorname*{Res}_{z=i}f(z)=frac{exp(a(ln|i|+iarg i))}{i+i}=frac{e^{pi ia/2}}{2i}$$
$$operatorname*{Res}_{z=-i}f(z)=frac{exp(a(ln|-i|+iarg -i))}{-i-i}=-frac{e^{3pi ia/2}}{2i}$$
Thus,
$$oint_C f(z)dz=pi(e^{pi ia/2}-e^{3pi ia/2})$$
On the other hand,
$$oint f(z)dz=K_1+K_2+K_3+K_4$$
where
$$
K_1=lim_{Rtoinfty}int^{2pi}_0 f(Re^{it})iRe^{it}dt
=lim_{Rtoinfty}2pi f(Re^{ic})iRe^{ic}=0 qquad{cin[0,2pi]}$$
$$K_2=lim_{rto0^+}int_{2pi}^0 f(re^{it})ire^{it}dt
=lim_{rto0^+}2pi f(re^{ic})ire^{ic}=0 qquad{cin[0,2pi]}$$
$$K_3=int^infty_0 f(te^{i0})dt=int^infty_0frac{e^{i0}t^a}{t^2+1}dt=I$$
$$K_4=int_infty^0 f(te^{i2pi})dt=-int^infty_0frac{e^{2pi ia}t^a}{t^2+1}dt=-e^{2pi ia}I$$
For $K_1,K_2$, please respectively note the asymptotics $f(z)sim z^{a}$ for small $|z|$ and $f(z)=O(z^{a-2})$ for large $|z|$.
Therefore,
$$I-e^{2pi ia}I=pi(e^{pi ia/2}-e^{3pi ia/2})$$
$$implies I=pifrac{e^{pi ia/2}-e^{3pi ia/2}}{1-e^{2pi ia}}
=pifrac{e^{-pi ia/2}-e^{pi ia/2}}{e^{-pi i a}-e^{pi ia}}
=pifrac{sin(pi a/2)}{sin(pi a)}
=frac{pi}2secleft(frac{pi a}2right)
$$
Let $T=tan(pi a/2)$, $S=sec(pi a/2)$.
$$I^{(4)}(a)=frac{pi}2frac{pi^4(T^4+18S^2T^2+5S^4)}{16}$$
Hence,
$$J=I^{(4)}(0)=frac{pi}2frac{pi^4(0+0+5cdot 1)}{16}=color{red}{frac{5pi^5}{32}}$$
The tedious differentiation is done by calculator. :)
add a comment |
Feynman isn't necessarily antangonistic to contour integration. They sometimes work together well.
$$J=int^infty_0frac{log^4(x)}{1+x^2}dx=I^{(4)}(0)$$
where
$$I(a)=int^infty_{0}frac{x^{a}}{1+x^2}dx$$ with $-1<a<1$.
Take $C$ as a keyhole contour, centered at the origin, avoiding the positive real axis.
Let $f(z)=z^a(1+z^2)^{-1}$ with branch cut on the positive real axis, implying $z^aequiv exp(a(ln|z|+iarg z))$ where $arg zin[0,2pi)$.
Firstly, by residue theorem,
$$oint_C f(z)dz=2pi ibigg(operatorname*{Res}_{z=i}f(z)+operatorname*{Res}_{z=-i}f(z)bigg)$$
We have
$$operatorname*{Res}_{z=i}f(z)=frac{exp(a(ln|i|+iarg i))}{i+i}=frac{e^{pi ia/2}}{2i}$$
$$operatorname*{Res}_{z=-i}f(z)=frac{exp(a(ln|-i|+iarg -i))}{-i-i}=-frac{e^{3pi ia/2}}{2i}$$
Thus,
$$oint_C f(z)dz=pi(e^{pi ia/2}-e^{3pi ia/2})$$
On the other hand,
$$oint f(z)dz=K_1+K_2+K_3+K_4$$
where
$$
K_1=lim_{Rtoinfty}int^{2pi}_0 f(Re^{it})iRe^{it}dt
=lim_{Rtoinfty}2pi f(Re^{ic})iRe^{ic}=0 qquad{cin[0,2pi]}$$
$$K_2=lim_{rto0^+}int_{2pi}^0 f(re^{it})ire^{it}dt
=lim_{rto0^+}2pi f(re^{ic})ire^{ic}=0 qquad{cin[0,2pi]}$$
$$K_3=int^infty_0 f(te^{i0})dt=int^infty_0frac{e^{i0}t^a}{t^2+1}dt=I$$
$$K_4=int_infty^0 f(te^{i2pi})dt=-int^infty_0frac{e^{2pi ia}t^a}{t^2+1}dt=-e^{2pi ia}I$$
For $K_1,K_2$, please respectively note the asymptotics $f(z)sim z^{a}$ for small $|z|$ and $f(z)=O(z^{a-2})$ for large $|z|$.
Therefore,
$$I-e^{2pi ia}I=pi(e^{pi ia/2}-e^{3pi ia/2})$$
$$implies I=pifrac{e^{pi ia/2}-e^{3pi ia/2}}{1-e^{2pi ia}}
=pifrac{e^{-pi ia/2}-e^{pi ia/2}}{e^{-pi i a}-e^{pi ia}}
=pifrac{sin(pi a/2)}{sin(pi a)}
=frac{pi}2secleft(frac{pi a}2right)
$$
Let $T=tan(pi a/2)$, $S=sec(pi a/2)$.
$$I^{(4)}(a)=frac{pi}2frac{pi^4(T^4+18S^2T^2+5S^4)}{16}$$
Hence,
$$J=I^{(4)}(0)=frac{pi}2frac{pi^4(0+0+5cdot 1)}{16}=color{red}{frac{5pi^5}{32}}$$
The tedious differentiation is done by calculator. :)
add a comment |
Feynman isn't necessarily antangonistic to contour integration. They sometimes work together well.
$$J=int^infty_0frac{log^4(x)}{1+x^2}dx=I^{(4)}(0)$$
where
$$I(a)=int^infty_{0}frac{x^{a}}{1+x^2}dx$$ with $-1<a<1$.
Take $C$ as a keyhole contour, centered at the origin, avoiding the positive real axis.
Let $f(z)=z^a(1+z^2)^{-1}$ with branch cut on the positive real axis, implying $z^aequiv exp(a(ln|z|+iarg z))$ where $arg zin[0,2pi)$.
Firstly, by residue theorem,
$$oint_C f(z)dz=2pi ibigg(operatorname*{Res}_{z=i}f(z)+operatorname*{Res}_{z=-i}f(z)bigg)$$
We have
$$operatorname*{Res}_{z=i}f(z)=frac{exp(a(ln|i|+iarg i))}{i+i}=frac{e^{pi ia/2}}{2i}$$
$$operatorname*{Res}_{z=-i}f(z)=frac{exp(a(ln|-i|+iarg -i))}{-i-i}=-frac{e^{3pi ia/2}}{2i}$$
Thus,
$$oint_C f(z)dz=pi(e^{pi ia/2}-e^{3pi ia/2})$$
On the other hand,
$$oint f(z)dz=K_1+K_2+K_3+K_4$$
where
$$
K_1=lim_{Rtoinfty}int^{2pi}_0 f(Re^{it})iRe^{it}dt
=lim_{Rtoinfty}2pi f(Re^{ic})iRe^{ic}=0 qquad{cin[0,2pi]}$$
$$K_2=lim_{rto0^+}int_{2pi}^0 f(re^{it})ire^{it}dt
=lim_{rto0^+}2pi f(re^{ic})ire^{ic}=0 qquad{cin[0,2pi]}$$
$$K_3=int^infty_0 f(te^{i0})dt=int^infty_0frac{e^{i0}t^a}{t^2+1}dt=I$$
$$K_4=int_infty^0 f(te^{i2pi})dt=-int^infty_0frac{e^{2pi ia}t^a}{t^2+1}dt=-e^{2pi ia}I$$
For $K_1,K_2$, please respectively note the asymptotics $f(z)sim z^{a}$ for small $|z|$ and $f(z)=O(z^{a-2})$ for large $|z|$.
Therefore,
$$I-e^{2pi ia}I=pi(e^{pi ia/2}-e^{3pi ia/2})$$
$$implies I=pifrac{e^{pi ia/2}-e^{3pi ia/2}}{1-e^{2pi ia}}
=pifrac{e^{-pi ia/2}-e^{pi ia/2}}{e^{-pi i a}-e^{pi ia}}
=pifrac{sin(pi a/2)}{sin(pi a)}
=frac{pi}2secleft(frac{pi a}2right)
$$
Let $T=tan(pi a/2)$, $S=sec(pi a/2)$.
$$I^{(4)}(a)=frac{pi}2frac{pi^4(T^4+18S^2T^2+5S^4)}{16}$$
Hence,
$$J=I^{(4)}(0)=frac{pi}2frac{pi^4(0+0+5cdot 1)}{16}=color{red}{frac{5pi^5}{32}}$$
The tedious differentiation is done by calculator. :)
Feynman isn't necessarily antangonistic to contour integration. They sometimes work together well.
$$J=int^infty_0frac{log^4(x)}{1+x^2}dx=I^{(4)}(0)$$
where
$$I(a)=int^infty_{0}frac{x^{a}}{1+x^2}dx$$ with $-1<a<1$.
Take $C$ as a keyhole contour, centered at the origin, avoiding the positive real axis.
Let $f(z)=z^a(1+z^2)^{-1}$ with branch cut on the positive real axis, implying $z^aequiv exp(a(ln|z|+iarg z))$ where $arg zin[0,2pi)$.
Firstly, by residue theorem,
$$oint_C f(z)dz=2pi ibigg(operatorname*{Res}_{z=i}f(z)+operatorname*{Res}_{z=-i}f(z)bigg)$$
We have
$$operatorname*{Res}_{z=i}f(z)=frac{exp(a(ln|i|+iarg i))}{i+i}=frac{e^{pi ia/2}}{2i}$$
$$operatorname*{Res}_{z=-i}f(z)=frac{exp(a(ln|-i|+iarg -i))}{-i-i}=-frac{e^{3pi ia/2}}{2i}$$
Thus,
$$oint_C f(z)dz=pi(e^{pi ia/2}-e^{3pi ia/2})$$
On the other hand,
$$oint f(z)dz=K_1+K_2+K_3+K_4$$
where
$$
K_1=lim_{Rtoinfty}int^{2pi}_0 f(Re^{it})iRe^{it}dt
=lim_{Rtoinfty}2pi f(Re^{ic})iRe^{ic}=0 qquad{cin[0,2pi]}$$
$$K_2=lim_{rto0^+}int_{2pi}^0 f(re^{it})ire^{it}dt
=lim_{rto0^+}2pi f(re^{ic})ire^{ic}=0 qquad{cin[0,2pi]}$$
$$K_3=int^infty_0 f(te^{i0})dt=int^infty_0frac{e^{i0}t^a}{t^2+1}dt=I$$
$$K_4=int_infty^0 f(te^{i2pi})dt=-int^infty_0frac{e^{2pi ia}t^a}{t^2+1}dt=-e^{2pi ia}I$$
For $K_1,K_2$, please respectively note the asymptotics $f(z)sim z^{a}$ for small $|z|$ and $f(z)=O(z^{a-2})$ for large $|z|$.
Therefore,
$$I-e^{2pi ia}I=pi(e^{pi ia/2}-e^{3pi ia/2})$$
$$implies I=pifrac{e^{pi ia/2}-e^{3pi ia/2}}{1-e^{2pi ia}}
=pifrac{e^{-pi ia/2}-e^{pi ia/2}}{e^{-pi i a}-e^{pi ia}}
=pifrac{sin(pi a/2)}{sin(pi a)}
=frac{pi}2secleft(frac{pi a}2right)
$$
Let $T=tan(pi a/2)$, $S=sec(pi a/2)$.
$$I^{(4)}(a)=frac{pi}2frac{pi^4(T^4+18S^2T^2+5S^4)}{16}$$
Hence,
$$J=I^{(4)}(0)=frac{pi}2frac{pi^4(0+0+5cdot 1)}{16}=color{red}{frac{5pi^5}{32}}$$
The tedious differentiation is done by calculator. :)
edited Nov 22 '18 at 3:13
answered Nov 22 '18 at 2:50
Szeto
6,4362926
6,4362926
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007258%2fcontour-integration-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
In you argument how is $log, x$ defined for $x<0$?
– Kavi Rama Murthy
Nov 21 '18 at 4:56
for $ log(z)$, I have chosen the branch $frac{-pi}{2}$ $leq$ arg(z) $leq$ $frac{3pi}{2}$.
– math_b
Nov 21 '18 at 13:10
On the contour, when x $lt$ 0, it is just the line on the negative real axis (from $- R$ to $- r$), where $R$ is the radius of the larger semi-circle and $r$ is the radius of smaller semi-circle.
– math_b
Nov 21 '18 at 13:12
The following MSE link presents a procedure for higher powers of the logarithm.
– Marko Riedel
Nov 21 '18 at 13:50