Prediction methods to resolve differential equation.
$begingroup$
How resolved this difference equation used prediction methods?
$$X' = left[begin{array}{ccc}1&-1&-2\1&3&2\1&-1&2end{array}right]X + left[begin{array}{c}t^{2}\t+2\2end{array}right]$$
Calculate eigenvalues and eigenvectors:
$$lambda_{1} = 2 + 2i$$
$$lambda_{2} = 2-2i$$
$$lambda_{3} = 2$$
$$v_{1} = (i,-i,1)$$
$$v_{2} = (-i,i,1)$$
$$v_{3} = (-1,-1,1)$$
So,
$$X_{b} = C_{1}left(begin{array}{c}i\-i\iend{array}right)e^{(2+2i)t} + C_{2} left(begin{array}{c}-i\i\1 end{array}right)e^{(2-2i)t} + C_{3} left(begin{array}{c}1\-1\ 1end{array}right)e^{2t}$$
How continue?
ordinary-differential-equations systems-of-equations matrix-equations
$endgroup$
add a comment |
$begingroup$
How resolved this difference equation used prediction methods?
$$X' = left[begin{array}{ccc}1&-1&-2\1&3&2\1&-1&2end{array}right]X + left[begin{array}{c}t^{2}\t+2\2end{array}right]$$
Calculate eigenvalues and eigenvectors:
$$lambda_{1} = 2 + 2i$$
$$lambda_{2} = 2-2i$$
$$lambda_{3} = 2$$
$$v_{1} = (i,-i,1)$$
$$v_{2} = (-i,i,1)$$
$$v_{3} = (-1,-1,1)$$
So,
$$X_{b} = C_{1}left(begin{array}{c}i\-i\iend{array}right)e^{(2+2i)t} + C_{2} left(begin{array}{c}-i\i\1 end{array}right)e^{(2-2i)t} + C_{3} left(begin{array}{c}1\-1\ 1end{array}right)e^{2t}$$
How continue?
ordinary-differential-equations systems-of-equations matrix-equations
$endgroup$
add a comment |
$begingroup$
How resolved this difference equation used prediction methods?
$$X' = left[begin{array}{ccc}1&-1&-2\1&3&2\1&-1&2end{array}right]X + left[begin{array}{c}t^{2}\t+2\2end{array}right]$$
Calculate eigenvalues and eigenvectors:
$$lambda_{1} = 2 + 2i$$
$$lambda_{2} = 2-2i$$
$$lambda_{3} = 2$$
$$v_{1} = (i,-i,1)$$
$$v_{2} = (-i,i,1)$$
$$v_{3} = (-1,-1,1)$$
So,
$$X_{b} = C_{1}left(begin{array}{c}i\-i\iend{array}right)e^{(2+2i)t} + C_{2} left(begin{array}{c}-i\i\1 end{array}right)e^{(2-2i)t} + C_{3} left(begin{array}{c}1\-1\ 1end{array}right)e^{2t}$$
How continue?
ordinary-differential-equations systems-of-equations matrix-equations
$endgroup$
How resolved this difference equation used prediction methods?
$$X' = left[begin{array}{ccc}1&-1&-2\1&3&2\1&-1&2end{array}right]X + left[begin{array}{c}t^{2}\t+2\2end{array}right]$$
Calculate eigenvalues and eigenvectors:
$$lambda_{1} = 2 + 2i$$
$$lambda_{2} = 2-2i$$
$$lambda_{3} = 2$$
$$v_{1} = (i,-i,1)$$
$$v_{2} = (-i,i,1)$$
$$v_{3} = (-1,-1,1)$$
So,
$$X_{b} = C_{1}left(begin{array}{c}i\-i\iend{array}right)e^{(2+2i)t} + C_{2} left(begin{array}{c}-i\i\1 end{array}right)e^{(2-2i)t} + C_{3} left(begin{array}{c}1\-1\ 1end{array}right)e^{2t}$$
How continue?
ordinary-differential-equations systems-of-equations matrix-equations
ordinary-differential-equations systems-of-equations matrix-equations
edited Jan 8 at 2:00
bjcolby15
1,21611016
1,21611016
asked Jan 7 at 23:27
svssvs
6
6
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: $$begin {matrix} dfrac {e^{i x} + e^{-i x}}{2} = ? text { and } dfrac {e^{i x} - e^{-i x}}{2} = ? end {matrix}$$
(in terms of what functions?)
Also, $$begin {matrix} dfrac {e^{x} + e^{-x}}{2} = ? text { and } dfrac {e^{x} - e^{-x}}{2} = ? end {matrix}$$
(in terms of what other functions?)
$endgroup$
$begingroup$
$$ frac{e^{x} + e^{-x}}{2} = cosh{x} $$ $$ frac{e^{x} - e^{-x}}{2} = sinh{x} $$ $$ frac{e^{ix} + e^{-ix}}{2} = cos{x} $$ $$ frac{e^{ix} - e^{-ix}}{2i} = sin{x} $$ but, what next?
$endgroup$
– svs
Jan 8 at 12:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065634%2fprediction-methods-to-resolve-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $$begin {matrix} dfrac {e^{i x} + e^{-i x}}{2} = ? text { and } dfrac {e^{i x} - e^{-i x}}{2} = ? end {matrix}$$
(in terms of what functions?)
Also, $$begin {matrix} dfrac {e^{x} + e^{-x}}{2} = ? text { and } dfrac {e^{x} - e^{-x}}{2} = ? end {matrix}$$
(in terms of what other functions?)
$endgroup$
$begingroup$
$$ frac{e^{x} + e^{-x}}{2} = cosh{x} $$ $$ frac{e^{x} - e^{-x}}{2} = sinh{x} $$ $$ frac{e^{ix} + e^{-ix}}{2} = cos{x} $$ $$ frac{e^{ix} - e^{-ix}}{2i} = sin{x} $$ but, what next?
$endgroup$
– svs
Jan 8 at 12:54
add a comment |
$begingroup$
Hint: $$begin {matrix} dfrac {e^{i x} + e^{-i x}}{2} = ? text { and } dfrac {e^{i x} - e^{-i x}}{2} = ? end {matrix}$$
(in terms of what functions?)
Also, $$begin {matrix} dfrac {e^{x} + e^{-x}}{2} = ? text { and } dfrac {e^{x} - e^{-x}}{2} = ? end {matrix}$$
(in terms of what other functions?)
$endgroup$
$begingroup$
$$ frac{e^{x} + e^{-x}}{2} = cosh{x} $$ $$ frac{e^{x} - e^{-x}}{2} = sinh{x} $$ $$ frac{e^{ix} + e^{-ix}}{2} = cos{x} $$ $$ frac{e^{ix} - e^{-ix}}{2i} = sin{x} $$ but, what next?
$endgroup$
– svs
Jan 8 at 12:54
add a comment |
$begingroup$
Hint: $$begin {matrix} dfrac {e^{i x} + e^{-i x}}{2} = ? text { and } dfrac {e^{i x} - e^{-i x}}{2} = ? end {matrix}$$
(in terms of what functions?)
Also, $$begin {matrix} dfrac {e^{x} + e^{-x}}{2} = ? text { and } dfrac {e^{x} - e^{-x}}{2} = ? end {matrix}$$
(in terms of what other functions?)
$endgroup$
Hint: $$begin {matrix} dfrac {e^{i x} + e^{-i x}}{2} = ? text { and } dfrac {e^{i x} - e^{-i x}}{2} = ? end {matrix}$$
(in terms of what functions?)
Also, $$begin {matrix} dfrac {e^{x} + e^{-x}}{2} = ? text { and } dfrac {e^{x} - e^{-x}}{2} = ? end {matrix}$$
(in terms of what other functions?)
edited Jan 8 at 2:41
answered Jan 8 at 0:57
bjcolby15bjcolby15
1,21611016
1,21611016
$begingroup$
$$ frac{e^{x} + e^{-x}}{2} = cosh{x} $$ $$ frac{e^{x} - e^{-x}}{2} = sinh{x} $$ $$ frac{e^{ix} + e^{-ix}}{2} = cos{x} $$ $$ frac{e^{ix} - e^{-ix}}{2i} = sin{x} $$ but, what next?
$endgroup$
– svs
Jan 8 at 12:54
add a comment |
$begingroup$
$$ frac{e^{x} + e^{-x}}{2} = cosh{x} $$ $$ frac{e^{x} - e^{-x}}{2} = sinh{x} $$ $$ frac{e^{ix} + e^{-ix}}{2} = cos{x} $$ $$ frac{e^{ix} - e^{-ix}}{2i} = sin{x} $$ but, what next?
$endgroup$
– svs
Jan 8 at 12:54
$begingroup$
$$ frac{e^{x} + e^{-x}}{2} = cosh{x} $$ $$ frac{e^{x} - e^{-x}}{2} = sinh{x} $$ $$ frac{e^{ix} + e^{-ix}}{2} = cos{x} $$ $$ frac{e^{ix} - e^{-ix}}{2i} = sin{x} $$ but, what next?
$endgroup$
– svs
Jan 8 at 12:54
$begingroup$
$$ frac{e^{x} + e^{-x}}{2} = cosh{x} $$ $$ frac{e^{x} - e^{-x}}{2} = sinh{x} $$ $$ frac{e^{ix} + e^{-ix}}{2} = cos{x} $$ $$ frac{e^{ix} - e^{-ix}}{2i} = sin{x} $$ but, what next?
$endgroup$
– svs
Jan 8 at 12:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065634%2fprediction-methods-to-resolve-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown