Prove $sum_{k=1}^m cot^2 kpi/(2m+1)=m(2m-1)/3$
$begingroup$
Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$
I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$
and induction without any success. Thanks for any help!
real-analysis calculus trigonometric-series
$endgroup$
add a comment |
$begingroup$
Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$
I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$
and induction without any success. Thanks for any help!
real-analysis calculus trigonometric-series
$endgroup$
1
$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13
$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32
2
$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40
add a comment |
$begingroup$
Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$
I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$
and induction without any success. Thanks for any help!
real-analysis calculus trigonometric-series
$endgroup$
Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$
I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$
and induction without any success. Thanks for any help!
real-analysis calculus trigonometric-series
real-analysis calculus trigonometric-series
edited Jan 8 at 0:06
rtybase
10.8k21533
10.8k21533
asked Jan 7 at 23:03
user64066user64066
1,643717
1,643717
1
$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13
$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32
2
$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40
add a comment |
1
$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13
$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32
2
$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40
1
1
$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13
$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13
$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32
$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32
2
2
$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40
$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Further to my last comment and given you used
$$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$
where
$$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
$$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$
$endgroup$
add a comment |
$begingroup$
Hint:
The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065615%2fprove-sum-k-1m-cot2-k-pi-2m1-m2m-1-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Further to my last comment and given you used
$$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$
where
$$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
$$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$
$endgroup$
add a comment |
$begingroup$
Further to my last comment and given you used
$$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$
where
$$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
$$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$
$endgroup$
add a comment |
$begingroup$
Further to my last comment and given you used
$$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$
where
$$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
$$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$
$endgroup$
Further to my last comment and given you used
$$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$
where
$$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
$$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$
edited Jan 8 at 0:11
answered Jan 8 at 0:03
rtybasertybase
10.8k21533
10.8k21533
add a comment |
add a comment |
$begingroup$
Hint:
The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.
$endgroup$
add a comment |
$begingroup$
Hint:
The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.
$endgroup$
add a comment |
$begingroup$
Hint:
The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.
$endgroup$
Hint:
The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.
answered Jan 7 at 23:12
MindlackMindlack
3,39217
3,39217
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065615%2fprove-sum-k-1m-cot2-k-pi-2m1-m2m-1-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13
$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32
2
$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40