Prove $sum_{k=1}^m cot^2 kpi/(2m+1)=m(2m-1)/3$












3












$begingroup$



Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$




I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$

and induction without any success. Thanks for any help!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    A few good hints here
    $endgroup$
    – rtybase
    Jan 7 at 23:13










  • $begingroup$
    Another hint contained in this question (the polynomial development part, see the question, not the answer).
    $endgroup$
    – rtybase
    Jan 7 at 23:32






  • 2




    $begingroup$
    I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 23:40


















3












$begingroup$



Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$




I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$

and induction without any success. Thanks for any help!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    A few good hints here
    $endgroup$
    – rtybase
    Jan 7 at 23:13










  • $begingroup$
    Another hint contained in this question (the polynomial development part, see the question, not the answer).
    $endgroup$
    – rtybase
    Jan 7 at 23:32






  • 2




    $begingroup$
    I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 23:40
















3












3








3


1



$begingroup$



Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$




I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$

and induction without any success. Thanks for any help!










share|cite|improve this question











$endgroup$





Prove that $$ sum_{k=1}^m cot^2 frac{kpi}{2m+1}=frac{m(2m-1)}{3} $$




I have tried to use $$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) cdot left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}left(cot^2xright)^{m-j}right)$$

and induction without any success. Thanks for any help!







real-analysis calculus trigonometric-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 0:06









rtybase

10.8k21533




10.8k21533










asked Jan 7 at 23:03









user64066user64066

1,643717




1,643717








  • 1




    $begingroup$
    A few good hints here
    $endgroup$
    – rtybase
    Jan 7 at 23:13










  • $begingroup$
    Another hint contained in this question (the polynomial development part, see the question, not the answer).
    $endgroup$
    – rtybase
    Jan 7 at 23:32






  • 2




    $begingroup$
    I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 23:40
















  • 1




    $begingroup$
    A few good hints here
    $endgroup$
    – rtybase
    Jan 7 at 23:13










  • $begingroup$
    Another hint contained in this question (the polynomial development part, see the question, not the answer).
    $endgroup$
    – rtybase
    Jan 7 at 23:32






  • 2




    $begingroup$
    I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 23:40










1




1




$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13




$begingroup$
A few good hints here
$endgroup$
– rtybase
Jan 7 at 23:13












$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32




$begingroup$
Another hint contained in this question (the polynomial development part, see the question, not the answer).
$endgroup$
– rtybase
Jan 7 at 23:32




2




2




$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40






$begingroup$
I guess you can find a copy of Cauchy's Cours d'Analyse - this is the key ingredient of Cauchy's proof of $zeta(2)=frac{pi^2}{6}$. It can be proved in many ways, for instance by applying Vieta's formulas to Chebyshev polynomials of the second kind. You may have a look at my notes too, in the section about the Basel problem.
$endgroup$
– Jack D'Aurizio
Jan 7 at 23:40












2 Answers
2






active

oldest

votes


















2












$begingroup$

Further to my last comment and given you used
$$sinleft((2m+1)xright)=
left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$

where
$$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
$$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Hint:
    The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065615%2fprove-sum-k-1m-cot2-k-pi-2m1-m2m-1-3%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Further to my last comment and given you used
      $$sinleft((2m+1)xright)=
      left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
      left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$

      where
      $$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
      is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
      $$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        Further to my last comment and given you used
        $$sinleft((2m+1)xright)=
        left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
        left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$

        where
        $$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
        is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
        $$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          Further to my last comment and given you used
          $$sinleft((2m+1)xright)=
          left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
          left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$

          where
          $$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
          is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
          $$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$






          share|cite|improve this answer











          $endgroup$



          Further to my last comment and given you used
          $$sinleft((2m+1)xright)=
          left(sin^{2m+1}xright) left(sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}(cot^2x)^{m-j}right)=
          left(sin^{2m+1}xright) cdot Pleft(cot^2{x}right)tag{1}$$

          where
          $$P(x)=sum_{j=0}^m (-1)^j binom{2m+1}{2j+1}x^{m-j}=binom{2m+1}{1}x^m-binom{2m+1}{3}x^{m-1}+...$$
          is a polynomial of degree $m$, with (easy to see from $(1)$ since $sinleft((2m+1)frac{kpi}{2m+1}right)=0$) $cot^2{frac{kpi}{2m+1}}, k=1..m$ as roots. Using Vieta's formulas
          $$sum_{k=1}^m cot^2{frac{kpi}{2m+1}}=-frac{-binom{2m+1}{3}}{binom{2m+1}{1}}=frac{(2m+1)(2m)(2m-1)}{(2m+1)cdot 2 cdot 3}=frac{m(2m-1)}{3}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 8 at 0:11

























          answered Jan 8 at 0:03









          rtybasertybase

          10.8k21533




          10.8k21533























              1












              $begingroup$

              Hint:
              The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Hint:
                The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint:
                  The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.






                  share|cite|improve this answer









                  $endgroup$



                  Hint:
                  The $-icotleft(frac{kpi}{2m+1}right)$, for $1 leq |k| leq m$, are the distinct roots of $(X+1)^{2m+1}-(X-1)^{2m+1}$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 7 at 23:12









                  MindlackMindlack

                  3,39217




                  3,39217






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065615%2fprove-sum-k-1m-cot2-k-pi-2m1-m2m-1-3%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith