Trying to find Taylor expansion of $arcsin(x)$












1















Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$




So my guess is this is some kind of $arcsin(x)$.



My attempt:



Let $f(x) = arcsin(x)$ then



$f'(x) = frac 1{sqrt{1-x^2}}$



We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:



$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$



if we integrate both sides we get that:



$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$



Is there something wrong with my expansion? I think I might've made a mistake somewhere










share|cite|improve this question




















  • 1




    The title of the question is a bit misleading.
    – Berci
    Nov 20 '18 at 23:33






  • 1




    It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
    – Bernard
    Nov 20 '18 at 23:34
















1















Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$




So my guess is this is some kind of $arcsin(x)$.



My attempt:



Let $f(x) = arcsin(x)$ then



$f'(x) = frac 1{sqrt{1-x^2}}$



We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:



$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$



if we integrate both sides we get that:



$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$



Is there something wrong with my expansion? I think I might've made a mistake somewhere










share|cite|improve this question




















  • 1




    The title of the question is a bit misleading.
    – Berci
    Nov 20 '18 at 23:33






  • 1




    It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
    – Bernard
    Nov 20 '18 at 23:34














1












1








1


0






Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$




So my guess is this is some kind of $arcsin(x)$.



My attempt:



Let $f(x) = arcsin(x)$ then



$f'(x) = frac 1{sqrt{1-x^2}}$



We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:



$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$



if we integrate both sides we get that:



$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$



Is there something wrong with my expansion? I think I might've made a mistake somewhere










share|cite|improve this question
















Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$




So my guess is this is some kind of $arcsin(x)$.



My attempt:



Let $f(x) = arcsin(x)$ then



$f'(x) = frac 1{sqrt{1-x^2}}$



We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:



$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$



if we integrate both sides we get that:



$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$



Is there something wrong with my expansion? I think I might've made a mistake somewhere







real-analysis sequences-and-series power-series taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 20 '18 at 23:13









Bernard

118k639112




118k639112










asked Nov 20 '18 at 23:10









C. Cristi

1,476218




1,476218








  • 1




    The title of the question is a bit misleading.
    – Berci
    Nov 20 '18 at 23:33






  • 1




    It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
    – Bernard
    Nov 20 '18 at 23:34














  • 1




    The title of the question is a bit misleading.
    – Berci
    Nov 20 '18 at 23:33






  • 1




    It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
    – Bernard
    Nov 20 '18 at 23:34








1




1




The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33




The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33




1




1




It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34




It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34










1 Answer
1






active

oldest

votes


















0














$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$






share|cite|improve this answer





















  • Can you be more explicit at firs step?
    – C. Cristi
    Nov 21 '18 at 6:39










  • @C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
    – Jack D'Aurizio
    Nov 21 '18 at 16:44











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007034%2ftrying-to-find-taylor-expansion-of-arcsinx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$






share|cite|improve this answer





















  • Can you be more explicit at firs step?
    – C. Cristi
    Nov 21 '18 at 6:39










  • @C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
    – Jack D'Aurizio
    Nov 21 '18 at 16:44
















0














$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$






share|cite|improve this answer





















  • Can you be more explicit at firs step?
    – C. Cristi
    Nov 21 '18 at 6:39










  • @C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
    – Jack D'Aurizio
    Nov 21 '18 at 16:44














0












0








0






$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$






share|cite|improve this answer












$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 21 '18 at 0:42









Jack D'Aurizio

287k33280657




287k33280657












  • Can you be more explicit at firs step?
    – C. Cristi
    Nov 21 '18 at 6:39










  • @C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
    – Jack D'Aurizio
    Nov 21 '18 at 16:44


















  • Can you be more explicit at firs step?
    – C. Cristi
    Nov 21 '18 at 6:39










  • @C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
    – Jack D'Aurizio
    Nov 21 '18 at 16:44
















Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39




Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39












@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44




@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007034%2ftrying-to-find-taylor-expansion-of-arcsinx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith