Trying to find Taylor expansion of $arcsin(x)$
Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$
So my guess is this is some kind of $arcsin(x)$.
My attempt:
Let $f(x) = arcsin(x)$ then
$f'(x) = frac 1{sqrt{1-x^2}}$
We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:
$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$
if we integrate both sides we get that:
$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$
Is there something wrong with my expansion? I think I might've made a mistake somewhere
real-analysis sequences-and-series power-series taylor-expansion
add a comment |
Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$
So my guess is this is some kind of $arcsin(x)$.
My attempt:
Let $f(x) = arcsin(x)$ then
$f'(x) = frac 1{sqrt{1-x^2}}$
We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:
$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$
if we integrate both sides we get that:
$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$
Is there something wrong with my expansion? I think I might've made a mistake somewhere
real-analysis sequences-and-series power-series taylor-expansion
1
The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33
1
It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34
add a comment |
Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$
So my guess is this is some kind of $arcsin(x)$.
My attempt:
Let $f(x) = arcsin(x)$ then
$f'(x) = frac 1{sqrt{1-x^2}}$
We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:
$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$
if we integrate both sides we get that:
$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$
Is there something wrong with my expansion? I think I might've made a mistake somewhere
real-analysis sequences-and-series power-series taylor-expansion
Find $sum_{n=1}^{infty} frac {1^2times3^2times...times(2n-1)^2}{2^{2n}(2n+1)!}=?$
So my guess is this is some kind of $arcsin(x)$.
My attempt:
Let $f(x) = arcsin(x)$ then
$f'(x) = frac 1{sqrt{1-x^2}}$
We know that : $(1+x)^{alpha}=1+sum_{n=1}^{infty}frac{alpha(alpha-1)...(alpha-n+1)}{n!}x^n$.So then with $alpha=-frac 12$ and $xleftarrow-x^2$ we get that:
$$frac 1{sqrt{1-x^2}}=1+sum_{n=1}^{infty} frac {(-frac12)(-frac 32)(-frac 52)...(-frac {2n-1}2)}{n!}(-1)^nx^{2n}=1+sum_{n = 1}^{infty}frac{1times3times5times...times(2n-1)}{2^nn!}x^{2n}.$$
if we integrate both sides we get that:
$$f(x)=x+sum_{n=1}^{infty}frac {1times3times...times(2n-1)}{2^nn!(2n+1)}x^{2n+1}$$
Is there something wrong with my expansion? I think I might've made a mistake somewhere
real-analysis sequences-and-series power-series taylor-expansion
real-analysis sequences-and-series power-series taylor-expansion
edited Nov 20 '18 at 23:13
Bernard
118k639112
118k639112
asked Nov 20 '18 at 23:10


C. Cristi
1,476218
1,476218
1
The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33
1
It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34
add a comment |
1
The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33
1
It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34
1
1
The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33
The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33
1
1
It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34
It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34
add a comment |
1 Answer
1
active
oldest
votes
$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$
Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39
@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007034%2ftrying-to-find-taylor-expansion-of-arcsinx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$
Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39
@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44
add a comment |
$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$
Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39
@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44
add a comment |
$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$
$$sum_{ngeq 1}frac{(2n-1)!!^2}{4^n(2n+1)!}=sum_{ngeq 1}frac{binom{2n}{n}}{16^n (2n+1)}=int_{0}^{1}left(frac{2}{sqrt{4-x^2}}-1right),dx=2arcsinfrac{1}{2}-1=frac{pi}{3}-1. $$
answered Nov 21 '18 at 0:42


Jack D'Aurizio
287k33280657
287k33280657
Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39
@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44
add a comment |
Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39
@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44
Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39
Can you be more explicit at firs step?
– C. Cristi
Nov 21 '18 at 6:39
@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44
@C.Cristi: $$frac{(2n-1)!!^2}{(2n+1)!}=frac{left[(2n)!/(2^n n!)right]^2}{4^n(2n+1)!}=frac{(2n)!binom{2n}{n}}{4^n (2n+1)!}=frac{binom{2n}{n}}{4^n(2n+1)}.$$
– Jack D'Aurizio
Nov 21 '18 at 16:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007034%2ftrying-to-find-taylor-expansion-of-arcsinx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
The title of the question is a bit misleading.
– Berci
Nov 20 '18 at 23:33
1
It's correct. The first term, conventionally, corresponds to $n=0$ in the general formula. There is a more compact form: $;displaystylesum_{n=0}^inftyfrac{(2n-1)!!}{(2n)!!}frac{x^{2n+1}}{2n+1}$.
– Bernard
Nov 20 '18 at 23:34