What is the number of squares in $S_n$?












13












$begingroup$


Let $$X_n={sigmamidsigma=tau^2 text{ for some }tauin S_n}.$$
What is the cardinality of $X_n$?



For example, permutation $(12)(3456)$ is not a square in S_n.
I know that $X_n=A_n$ for $nleq 5$ and $X_nsubset A_n$ for $ngeq6$.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    A permutation is a square iff for each even $k$, the permutation has evenly many cycles of length $k$. I'm not sure what the best way to count them is
    $endgroup$
    – Wojowu
    Dec 29 '18 at 15:49












  • $begingroup$
    @Wojowu I got the same and I think this way is not bad.
    $endgroup$
    – Radmir Sultamuratov
    Dec 29 '18 at 15:52






  • 3




    $begingroup$
    This sequence is in OEIS. It's not too hard to figure out that its exponential generating function is $prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$. You can simplify the product over odd $k$, but the even $k$ cause trouble. I doubt there's an explicit formula for the answer.
    $endgroup$
    – Milo Brandt
    Dec 31 '18 at 0:25


















13












$begingroup$


Let $$X_n={sigmamidsigma=tau^2 text{ for some }tauin S_n}.$$
What is the cardinality of $X_n$?



For example, permutation $(12)(3456)$ is not a square in S_n.
I know that $X_n=A_n$ for $nleq 5$ and $X_nsubset A_n$ for $ngeq6$.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    A permutation is a square iff for each even $k$, the permutation has evenly many cycles of length $k$. I'm not sure what the best way to count them is
    $endgroup$
    – Wojowu
    Dec 29 '18 at 15:49












  • $begingroup$
    @Wojowu I got the same and I think this way is not bad.
    $endgroup$
    – Radmir Sultamuratov
    Dec 29 '18 at 15:52






  • 3




    $begingroup$
    This sequence is in OEIS. It's not too hard to figure out that its exponential generating function is $prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$. You can simplify the product over odd $k$, but the even $k$ cause trouble. I doubt there's an explicit formula for the answer.
    $endgroup$
    – Milo Brandt
    Dec 31 '18 at 0:25
















13












13








13


4



$begingroup$


Let $$X_n={sigmamidsigma=tau^2 text{ for some }tauin S_n}.$$
What is the cardinality of $X_n$?



For example, permutation $(12)(3456)$ is not a square in S_n.
I know that $X_n=A_n$ for $nleq 5$ and $X_nsubset A_n$ for $ngeq6$.










share|cite|improve this question











$endgroup$




Let $$X_n={sigmamidsigma=tau^2 text{ for some }tauin S_n}.$$
What is the cardinality of $X_n$?



For example, permutation $(12)(3456)$ is not a square in S_n.
I know that $X_n=A_n$ for $nleq 5$ and $X_nsubset A_n$ for $ngeq6$.







group-theory finite-groups permutations generating-functions symmetric-groups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 8:26









Alexander Gruber

20k25102172




20k25102172










asked Dec 29 '18 at 15:30









Radmir SultamuratovRadmir Sultamuratov

724




724








  • 5




    $begingroup$
    A permutation is a square iff for each even $k$, the permutation has evenly many cycles of length $k$. I'm not sure what the best way to count them is
    $endgroup$
    – Wojowu
    Dec 29 '18 at 15:49












  • $begingroup$
    @Wojowu I got the same and I think this way is not bad.
    $endgroup$
    – Radmir Sultamuratov
    Dec 29 '18 at 15:52






  • 3




    $begingroup$
    This sequence is in OEIS. It's not too hard to figure out that its exponential generating function is $prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$. You can simplify the product over odd $k$, but the even $k$ cause trouble. I doubt there's an explicit formula for the answer.
    $endgroup$
    – Milo Brandt
    Dec 31 '18 at 0:25
















  • 5




    $begingroup$
    A permutation is a square iff for each even $k$, the permutation has evenly many cycles of length $k$. I'm not sure what the best way to count them is
    $endgroup$
    – Wojowu
    Dec 29 '18 at 15:49












  • $begingroup$
    @Wojowu I got the same and I think this way is not bad.
    $endgroup$
    – Radmir Sultamuratov
    Dec 29 '18 at 15:52






  • 3




    $begingroup$
    This sequence is in OEIS. It's not too hard to figure out that its exponential generating function is $prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$. You can simplify the product over odd $k$, but the even $k$ cause trouble. I doubt there's an explicit formula for the answer.
    $endgroup$
    – Milo Brandt
    Dec 31 '18 at 0:25










5




5




$begingroup$
A permutation is a square iff for each even $k$, the permutation has evenly many cycles of length $k$. I'm not sure what the best way to count them is
$endgroup$
– Wojowu
Dec 29 '18 at 15:49






$begingroup$
A permutation is a square iff for each even $k$, the permutation has evenly many cycles of length $k$. I'm not sure what the best way to count them is
$endgroup$
– Wojowu
Dec 29 '18 at 15:49














$begingroup$
@Wojowu I got the same and I think this way is not bad.
$endgroup$
– Radmir Sultamuratov
Dec 29 '18 at 15:52




$begingroup$
@Wojowu I got the same and I think this way is not bad.
$endgroup$
– Radmir Sultamuratov
Dec 29 '18 at 15:52




3




3




$begingroup$
This sequence is in OEIS. It's not too hard to figure out that its exponential generating function is $prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$. You can simplify the product over odd $k$, but the even $k$ cause trouble. I doubt there's an explicit formula for the answer.
$endgroup$
– Milo Brandt
Dec 31 '18 at 0:25






$begingroup$
This sequence is in OEIS. It's not too hard to figure out that its exponential generating function is $prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$. You can simplify the product over odd $k$, but the even $k$ cause trouble. I doubt there's an explicit formula for the answer.
$endgroup$
– Milo Brandt
Dec 31 '18 at 0:25












1 Answer
1






active

oldest

votes


















5












$begingroup$

The strategy here is to rewrite the generating function $g(x)=sum_{kgeq 0}left|X_kright|frac{x^k}{k!}$ in a way that makes it feasible for us compute its Taylor series. We can then extract $|X_k|$ from the Taylor coefficients.



As Milo mentioned in the comments, the generating function is $$g(x)=prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
Since we're multiplying like bases, the left term can be simplified to $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)label{star}tag{$star$}$$
We can rewrite $sum_{ktext{ odd}}frac{x^{k}}{k}$ as
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ even}}left(-frac{x^{k}}{k}+frac{x^{k}}{k}right)\
&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}
end{eqnarray*}$$

Tack another $sum_{ktext{ odd}}frac{x^{k}}{k}$ to each side and we get
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}\
2sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}\
sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\end{eqnarray*}$$

at which point we are haunted by the spectre of calc 2:
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\
&=&frac{1}{2}left(lnleft(1+xright)-lnleft(1-xright)right)\
&=&lnleft(sqrt{frac{1+x}{1-x}}right)end{eqnarray*}$$

So, going back to $ref{star}$, we've got $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)=e^{lnleft(sqrt{frac{1+x}{1-x}}right)}=sqrt{frac{1+x}{1-x}}$$
and so the generating function is
$$g(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
From here, to get the Taylor coefficients, you can just truncate the function at an appropriate $n$, $$g_n(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}\ text{ }kleq n}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$ But which $n$ is appropriate? Since $frac{e^{x^k/k}+e^{-x^k/k}}2=1+frac{1}{2k^2}x^{2k}+O(x^{2k+1})$, that means the $k^text{th}$ Taylor coefficients of $g_n(x)$ will be equal to the $k^text{th}$ Taylor coefficients of $g(x)$ for every $k$ up to $3+4n$.



Thus, if you want to know $|X_k|$, choose the smallest integer $ngeq (k-3)/4$, and compute $g_n^{(k)}(0)$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Veery nice! Thanks!
    $endgroup$
    – Radmir Sultamuratov
    Jan 9 at 22:18











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055946%2fwhat-is-the-number-of-squares-in-s-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

The strategy here is to rewrite the generating function $g(x)=sum_{kgeq 0}left|X_kright|frac{x^k}{k!}$ in a way that makes it feasible for us compute its Taylor series. We can then extract $|X_k|$ from the Taylor coefficients.



As Milo mentioned in the comments, the generating function is $$g(x)=prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
Since we're multiplying like bases, the left term can be simplified to $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)label{star}tag{$star$}$$
We can rewrite $sum_{ktext{ odd}}frac{x^{k}}{k}$ as
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ even}}left(-frac{x^{k}}{k}+frac{x^{k}}{k}right)\
&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}
end{eqnarray*}$$

Tack another $sum_{ktext{ odd}}frac{x^{k}}{k}$ to each side and we get
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}\
2sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}\
sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\end{eqnarray*}$$

at which point we are haunted by the spectre of calc 2:
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\
&=&frac{1}{2}left(lnleft(1+xright)-lnleft(1-xright)right)\
&=&lnleft(sqrt{frac{1+x}{1-x}}right)end{eqnarray*}$$

So, going back to $ref{star}$, we've got $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)=e^{lnleft(sqrt{frac{1+x}{1-x}}right)}=sqrt{frac{1+x}{1-x}}$$
and so the generating function is
$$g(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
From here, to get the Taylor coefficients, you can just truncate the function at an appropriate $n$, $$g_n(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}\ text{ }kleq n}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$ But which $n$ is appropriate? Since $frac{e^{x^k/k}+e^{-x^k/k}}2=1+frac{1}{2k^2}x^{2k}+O(x^{2k+1})$, that means the $k^text{th}$ Taylor coefficients of $g_n(x)$ will be equal to the $k^text{th}$ Taylor coefficients of $g(x)$ for every $k$ up to $3+4n$.



Thus, if you want to know $|X_k|$, choose the smallest integer $ngeq (k-3)/4$, and compute $g_n^{(k)}(0)$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Veery nice! Thanks!
    $endgroup$
    – Radmir Sultamuratov
    Jan 9 at 22:18
















5












$begingroup$

The strategy here is to rewrite the generating function $g(x)=sum_{kgeq 0}left|X_kright|frac{x^k}{k!}$ in a way that makes it feasible for us compute its Taylor series. We can then extract $|X_k|$ from the Taylor coefficients.



As Milo mentioned in the comments, the generating function is $$g(x)=prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
Since we're multiplying like bases, the left term can be simplified to $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)label{star}tag{$star$}$$
We can rewrite $sum_{ktext{ odd}}frac{x^{k}}{k}$ as
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ even}}left(-frac{x^{k}}{k}+frac{x^{k}}{k}right)\
&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}
end{eqnarray*}$$

Tack another $sum_{ktext{ odd}}frac{x^{k}}{k}$ to each side and we get
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}\
2sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}\
sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\end{eqnarray*}$$

at which point we are haunted by the spectre of calc 2:
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\
&=&frac{1}{2}left(lnleft(1+xright)-lnleft(1-xright)right)\
&=&lnleft(sqrt{frac{1+x}{1-x}}right)end{eqnarray*}$$

So, going back to $ref{star}$, we've got $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)=e^{lnleft(sqrt{frac{1+x}{1-x}}right)}=sqrt{frac{1+x}{1-x}}$$
and so the generating function is
$$g(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
From here, to get the Taylor coefficients, you can just truncate the function at an appropriate $n$, $$g_n(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}\ text{ }kleq n}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$ But which $n$ is appropriate? Since $frac{e^{x^k/k}+e^{-x^k/k}}2=1+frac{1}{2k^2}x^{2k}+O(x^{2k+1})$, that means the $k^text{th}$ Taylor coefficients of $g_n(x)$ will be equal to the $k^text{th}$ Taylor coefficients of $g(x)$ for every $k$ up to $3+4n$.



Thus, if you want to know $|X_k|$, choose the smallest integer $ngeq (k-3)/4$, and compute $g_n^{(k)}(0)$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Veery nice! Thanks!
    $endgroup$
    – Radmir Sultamuratov
    Jan 9 at 22:18














5












5








5





$begingroup$

The strategy here is to rewrite the generating function $g(x)=sum_{kgeq 0}left|X_kright|frac{x^k}{k!}$ in a way that makes it feasible for us compute its Taylor series. We can then extract $|X_k|$ from the Taylor coefficients.



As Milo mentioned in the comments, the generating function is $$g(x)=prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
Since we're multiplying like bases, the left term can be simplified to $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)label{star}tag{$star$}$$
We can rewrite $sum_{ktext{ odd}}frac{x^{k}}{k}$ as
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ even}}left(-frac{x^{k}}{k}+frac{x^{k}}{k}right)\
&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}
end{eqnarray*}$$

Tack another $sum_{ktext{ odd}}frac{x^{k}}{k}$ to each side and we get
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}\
2sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}\
sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\end{eqnarray*}$$

at which point we are haunted by the spectre of calc 2:
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\
&=&frac{1}{2}left(lnleft(1+xright)-lnleft(1-xright)right)\
&=&lnleft(sqrt{frac{1+x}{1-x}}right)end{eqnarray*}$$

So, going back to $ref{star}$, we've got $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)=e^{lnleft(sqrt{frac{1+x}{1-x}}right)}=sqrt{frac{1+x}{1-x}}$$
and so the generating function is
$$g(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
From here, to get the Taylor coefficients, you can just truncate the function at an appropriate $n$, $$g_n(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}\ text{ }kleq n}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$ But which $n$ is appropriate? Since $frac{e^{x^k/k}+e^{-x^k/k}}2=1+frac{1}{2k^2}x^{2k}+O(x^{2k+1})$, that means the $k^text{th}$ Taylor coefficients of $g_n(x)$ will be equal to the $k^text{th}$ Taylor coefficients of $g(x)$ for every $k$ up to $3+4n$.



Thus, if you want to know $|X_k|$, choose the smallest integer $ngeq (k-3)/4$, and compute $g_n^{(k)}(0)$.






share|cite|improve this answer











$endgroup$



The strategy here is to rewrite the generating function $g(x)=sum_{kgeq 0}left|X_kright|frac{x^k}{k!}$ in a way that makes it feasible for us compute its Taylor series. We can then extract $|X_k|$ from the Taylor coefficients.



As Milo mentioned in the comments, the generating function is $$g(x)=prod_{ktext{ odd}}e^{x^k/k}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
Since we're multiplying like bases, the left term can be simplified to $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)label{star}tag{$star$}$$
We can rewrite $sum_{ktext{ odd}}frac{x^{k}}{k}$ as
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ even}}left(-frac{x^{k}}{k}+frac{x^{k}}{k}right)\
&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}
end{eqnarray*}$$

Tack another $sum_{ktext{ odd}}frac{x^{k}}{k}$ to each side and we get
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{ktext{ even}}frac{x^{k}}{k}+sum_{ktext{ odd}}frac{x^{k}}{k}\
2sum_{ktext{ odd}}frac{x^{k}}{k}&=&sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}\
sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\end{eqnarray*}$$

at which point we are haunted by the spectre of calc 2:
$$begin{eqnarray*}sum_{ktext{ odd}}frac{x^{k}}{k}&=&frac{1}{2}left(sum_{kgeq 1}(-1)^{k+1}frac{x^{k}}{k}+sum_{kgeq 1}frac{x^{k}}{k}right)\
&=&frac{1}{2}left(lnleft(1+xright)-lnleft(1-xright)right)\
&=&lnleft(sqrt{frac{1+x}{1-x}}right)end{eqnarray*}$$

So, going back to $ref{star}$, we've got $$prod_{ktext{ odd}}e^{x^k/k}=text{exp}left(sum_{ktext{ odd}}frac{x^{k}}{k}right)=e^{lnleft(sqrt{frac{1+x}{1-x}}right)}=sqrt{frac{1+x}{1-x}}$$
and so the generating function is
$$g(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$
From here, to get the Taylor coefficients, you can just truncate the function at an appropriate $n$, $$g_n(x)=sqrt{frac{1+x}{1-x}}prod_{ktext{ even}\ text{ }kleq n}left(frac{e^{x^k/k}+e^{-x^k/k}}2right)$$ But which $n$ is appropriate? Since $frac{e^{x^k/k}+e^{-x^k/k}}2=1+frac{1}{2k^2}x^{2k}+O(x^{2k+1})$, that means the $k^text{th}$ Taylor coefficients of $g_n(x)$ will be equal to the $k^text{th}$ Taylor coefficients of $g(x)$ for every $k$ up to $3+4n$.



Thus, if you want to know $|X_k|$, choose the smallest integer $ngeq (k-3)/4$, and compute $g_n^{(k)}(0)$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 8 at 19:53

























answered Jan 8 at 7:56









Alexander GruberAlexander Gruber

20k25102172




20k25102172












  • $begingroup$
    Veery nice! Thanks!
    $endgroup$
    – Radmir Sultamuratov
    Jan 9 at 22:18


















  • $begingroup$
    Veery nice! Thanks!
    $endgroup$
    – Radmir Sultamuratov
    Jan 9 at 22:18
















$begingroup$
Veery nice! Thanks!
$endgroup$
– Radmir Sultamuratov
Jan 9 at 22:18




$begingroup$
Veery nice! Thanks!
$endgroup$
– Radmir Sultamuratov
Jan 9 at 22:18


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055946%2fwhat-is-the-number-of-squares-in-s-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith