$X=(-infty,+infty]$, $T_>:={(-a,+infty]:a in [-infty, +infty]}$. Is $X$ compact?












-2














Let $X=(-infty,+infty]$ and $T_>:={(-a,+infty]:a in [-infty, +infty]}$.



$T_>$ is obviously a topology. How can I reason that $X$ is not compact? That is there exists an open cover of $X$ which has no finite subcover.



I thought about $cup_{n in mathbb{N}}(-n,+infty]$ which is an open cover of $X$ but for every $N in mathbb{N}$ $cup_{n=1}^{N}(-n, +infty)$ does not cover $(-infty,N]$ so $cup_{n in mathbb{N}}(-n,+infty]$ has no finite subcover.










share|cite|improve this question





























    -2














    Let $X=(-infty,+infty]$ and $T_>:={(-a,+infty]:a in [-infty, +infty]}$.



    $T_>$ is obviously a topology. How can I reason that $X$ is not compact? That is there exists an open cover of $X$ which has no finite subcover.



    I thought about $cup_{n in mathbb{N}}(-n,+infty]$ which is an open cover of $X$ but for every $N in mathbb{N}$ $cup_{n=1}^{N}(-n, +infty)$ does not cover $(-infty,N]$ so $cup_{n in mathbb{N}}(-n,+infty]$ has no finite subcover.










    share|cite|improve this question



























      -2












      -2








      -2







      Let $X=(-infty,+infty]$ and $T_>:={(-a,+infty]:a in [-infty, +infty]}$.



      $T_>$ is obviously a topology. How can I reason that $X$ is not compact? That is there exists an open cover of $X$ which has no finite subcover.



      I thought about $cup_{n in mathbb{N}}(-n,+infty]$ which is an open cover of $X$ but for every $N in mathbb{N}$ $cup_{n=1}^{N}(-n, +infty)$ does not cover $(-infty,N]$ so $cup_{n in mathbb{N}}(-n,+infty]$ has no finite subcover.










      share|cite|improve this question















      Let $X=(-infty,+infty]$ and $T_>:={(-a,+infty]:a in [-infty, +infty]}$.



      $T_>$ is obviously a topology. How can I reason that $X$ is not compact? That is there exists an open cover of $X$ which has no finite subcover.



      I thought about $cup_{n in mathbb{N}}(-n,+infty]$ which is an open cover of $X$ but for every $N in mathbb{N}$ $cup_{n=1}^{N}(-n, +infty)$ does not cover $(-infty,N]$ so $cup_{n in mathbb{N}}(-n,+infty]$ has no finite subcover.







      general-topology proof-verification






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 20 '18 at 21:30









      Henno Brandsma

      105k347114




      105k347114










      asked Nov 20 '18 at 21:23









      conrad

      757




      757






















          1 Answer
          1






          active

          oldest

          votes


















          1














          Yes, the cover $(-n, +infty]$ is a nested cover (the sets grow larger with increasing $n$) and so any finite subset of them has as their union the one with the maximal $n$, and so a finite subset never covers all of $X$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006922%2fx-infty-infty-t-a-inftya-in-infty-infty-is-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            Yes, the cover $(-n, +infty]$ is a nested cover (the sets grow larger with increasing $n$) and so any finite subset of them has as their union the one with the maximal $n$, and so a finite subset never covers all of $X$.






            share|cite|improve this answer


























              1














              Yes, the cover $(-n, +infty]$ is a nested cover (the sets grow larger with increasing $n$) and so any finite subset of them has as their union the one with the maximal $n$, and so a finite subset never covers all of $X$.






              share|cite|improve this answer
























                1












                1








                1






                Yes, the cover $(-n, +infty]$ is a nested cover (the sets grow larger with increasing $n$) and so any finite subset of them has as their union the one with the maximal $n$, and so a finite subset never covers all of $X$.






                share|cite|improve this answer












                Yes, the cover $(-n, +infty]$ is a nested cover (the sets grow larger with increasing $n$) and so any finite subset of them has as their union the one with the maximal $n$, and so a finite subset never covers all of $X$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 20 '18 at 21:29









                Henno Brandsma

                105k347114




                105k347114






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006922%2fx-infty-infty-t-a-inftya-in-infty-infty-is-x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith