Help evaluating this surface integral, how to evaluate $dS$ in this?
$begingroup$
Evaluating this surface integral
$int_{S}(a^2x^2+b^2y^2+c^2z^2)^{1/2}dS$ over the ellipsoid $S:ax^2+by^2+cz^2=1$
I am well aware of evaluating surface integral over any given sphere $x^2+y^2+z^2=a^2$ using the transformation $R(u,v)=langle acos(u)sin(v), asin(u)sin(v), acos(v) rangle$ and obtaining $dS =|R_u times Rv| = a^2sin(v)$.
So for the given surface integral, I want to be able to convert the ellipsoid to a sphere and then use the above transformation.
The transformation that seems reasonable to me for this task would be $R(u,v)=langle frac1acos(u)sin(v), frac1bsin(u)sin(v), frac1ccos(v)rangle$. But evaluating $dS=|R_utimes R_v|$ is not yielding any simple manageable form.
So I thought, I would first use the transformation to convert into sphere first using
$x=X/a, ;y=Y/b,;z=Z/c$ But I don't know how to evaluate $dS$ in this case since it has three unknowns and something like $|R_u times R_v|$ doesn't works.
Can you please help me how can solve this problem?
vectors vector-analysis surfaces surface-integrals multiple-integral
$endgroup$
add a comment |
$begingroup$
Evaluating this surface integral
$int_{S}(a^2x^2+b^2y^2+c^2z^2)^{1/2}dS$ over the ellipsoid $S:ax^2+by^2+cz^2=1$
I am well aware of evaluating surface integral over any given sphere $x^2+y^2+z^2=a^2$ using the transformation $R(u,v)=langle acos(u)sin(v), asin(u)sin(v), acos(v) rangle$ and obtaining $dS =|R_u times Rv| = a^2sin(v)$.
So for the given surface integral, I want to be able to convert the ellipsoid to a sphere and then use the above transformation.
The transformation that seems reasonable to me for this task would be $R(u,v)=langle frac1acos(u)sin(v), frac1bsin(u)sin(v), frac1ccos(v)rangle$. But evaluating $dS=|R_utimes R_v|$ is not yielding any simple manageable form.
So I thought, I would first use the transformation to convert into sphere first using
$x=X/a, ;y=Y/b,;z=Z/c$ But I don't know how to evaluate $dS$ in this case since it has three unknowns and something like $|R_u times R_v|$ doesn't works.
Can you please help me how can solve this problem?
vectors vector-analysis surfaces surface-integrals multiple-integral
$endgroup$
add a comment |
$begingroup$
Evaluating this surface integral
$int_{S}(a^2x^2+b^2y^2+c^2z^2)^{1/2}dS$ over the ellipsoid $S:ax^2+by^2+cz^2=1$
I am well aware of evaluating surface integral over any given sphere $x^2+y^2+z^2=a^2$ using the transformation $R(u,v)=langle acos(u)sin(v), asin(u)sin(v), acos(v) rangle$ and obtaining $dS =|R_u times Rv| = a^2sin(v)$.
So for the given surface integral, I want to be able to convert the ellipsoid to a sphere and then use the above transformation.
The transformation that seems reasonable to me for this task would be $R(u,v)=langle frac1acos(u)sin(v), frac1bsin(u)sin(v), frac1ccos(v)rangle$. But evaluating $dS=|R_utimes R_v|$ is not yielding any simple manageable form.
So I thought, I would first use the transformation to convert into sphere first using
$x=X/a, ;y=Y/b,;z=Z/c$ But I don't know how to evaluate $dS$ in this case since it has three unknowns and something like $|R_u times R_v|$ doesn't works.
Can you please help me how can solve this problem?
vectors vector-analysis surfaces surface-integrals multiple-integral
$endgroup$
Evaluating this surface integral
$int_{S}(a^2x^2+b^2y^2+c^2z^2)^{1/2}dS$ over the ellipsoid $S:ax^2+by^2+cz^2=1$
I am well aware of evaluating surface integral over any given sphere $x^2+y^2+z^2=a^2$ using the transformation $R(u,v)=langle acos(u)sin(v), asin(u)sin(v), acos(v) rangle$ and obtaining $dS =|R_u times Rv| = a^2sin(v)$.
So for the given surface integral, I want to be able to convert the ellipsoid to a sphere and then use the above transformation.
The transformation that seems reasonable to me for this task would be $R(u,v)=langle frac1acos(u)sin(v), frac1bsin(u)sin(v), frac1ccos(v)rangle$. But evaluating $dS=|R_utimes R_v|$ is not yielding any simple manageable form.
So I thought, I would first use the transformation to convert into sphere first using
$x=X/a, ;y=Y/b,;z=Z/c$ But I don't know how to evaluate $dS$ in this case since it has three unknowns and something like $|R_u times R_v|$ doesn't works.
Can you please help me how can solve this problem?
vectors vector-analysis surfaces surface-integrals multiple-integral
vectors vector-analysis surfaces surface-integrals multiple-integral
asked Jan 11 at 17:03
AbhayAbhay
3149
3149
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $f(x, y, z) = a x^2 + b y^2 + c z^2 - 1$. Notice that the integrand is $|nabla f|/2$. Therefore,
$$int_{partial mathcal E} frac {|nabla f|} 2 ,dS =
frac 1 2 int_{partial mathcal E} |nabla f|
,hat {mathbf n} cdot dmathbf S =
frac 1 2 int_{partial mathcal E} |nabla f|
,frac {nabla f} {|nabla f|} cdot dmathbf S = \
frac 1 2 int_{partial mathcal E} nabla f cdot dmathbf S =
frac 1 2 int_{mathcal E} nabla^2 f ,dV = \
(a + b + c) operatorname{Vol}(mathcal E) =
frac {4 pi (a + b + c)} {3 sqrt {a b c ,}}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070072%2fhelp-evaluating-this-surface-integral-how-to-evaluate-ds-in-this%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $f(x, y, z) = a x^2 + b y^2 + c z^2 - 1$. Notice that the integrand is $|nabla f|/2$. Therefore,
$$int_{partial mathcal E} frac {|nabla f|} 2 ,dS =
frac 1 2 int_{partial mathcal E} |nabla f|
,hat {mathbf n} cdot dmathbf S =
frac 1 2 int_{partial mathcal E} |nabla f|
,frac {nabla f} {|nabla f|} cdot dmathbf S = \
frac 1 2 int_{partial mathcal E} nabla f cdot dmathbf S =
frac 1 2 int_{mathcal E} nabla^2 f ,dV = \
(a + b + c) operatorname{Vol}(mathcal E) =
frac {4 pi (a + b + c)} {3 sqrt {a b c ,}}.$$
$endgroup$
add a comment |
$begingroup$
Let $f(x, y, z) = a x^2 + b y^2 + c z^2 - 1$. Notice that the integrand is $|nabla f|/2$. Therefore,
$$int_{partial mathcal E} frac {|nabla f|} 2 ,dS =
frac 1 2 int_{partial mathcal E} |nabla f|
,hat {mathbf n} cdot dmathbf S =
frac 1 2 int_{partial mathcal E} |nabla f|
,frac {nabla f} {|nabla f|} cdot dmathbf S = \
frac 1 2 int_{partial mathcal E} nabla f cdot dmathbf S =
frac 1 2 int_{mathcal E} nabla^2 f ,dV = \
(a + b + c) operatorname{Vol}(mathcal E) =
frac {4 pi (a + b + c)} {3 sqrt {a b c ,}}.$$
$endgroup$
add a comment |
$begingroup$
Let $f(x, y, z) = a x^2 + b y^2 + c z^2 - 1$. Notice that the integrand is $|nabla f|/2$. Therefore,
$$int_{partial mathcal E} frac {|nabla f|} 2 ,dS =
frac 1 2 int_{partial mathcal E} |nabla f|
,hat {mathbf n} cdot dmathbf S =
frac 1 2 int_{partial mathcal E} |nabla f|
,frac {nabla f} {|nabla f|} cdot dmathbf S = \
frac 1 2 int_{partial mathcal E} nabla f cdot dmathbf S =
frac 1 2 int_{mathcal E} nabla^2 f ,dV = \
(a + b + c) operatorname{Vol}(mathcal E) =
frac {4 pi (a + b + c)} {3 sqrt {a b c ,}}.$$
$endgroup$
Let $f(x, y, z) = a x^2 + b y^2 + c z^2 - 1$. Notice that the integrand is $|nabla f|/2$. Therefore,
$$int_{partial mathcal E} frac {|nabla f|} 2 ,dS =
frac 1 2 int_{partial mathcal E} |nabla f|
,hat {mathbf n} cdot dmathbf S =
frac 1 2 int_{partial mathcal E} |nabla f|
,frac {nabla f} {|nabla f|} cdot dmathbf S = \
frac 1 2 int_{partial mathcal E} nabla f cdot dmathbf S =
frac 1 2 int_{mathcal E} nabla^2 f ,dV = \
(a + b + c) operatorname{Vol}(mathcal E) =
frac {4 pi (a + b + c)} {3 sqrt {a b c ,}}.$$
answered Feb 2 at 15:37
MaximMaxim
5,5031219
5,5031219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070072%2fhelp-evaluating-this-surface-integral-how-to-evaluate-ds-in-this%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown