Union of lines $ { y = x/n : n in mathbb N+ }$ not homeomorphic to infinite wedge sum of lines?
up vote
0
down vote
favorite
As is described in the title, I believe $ { y = x/n : n in mathbb N+ }$ is homeomorphic to the infinite wedge sum $bigvee _infty mathbb R $, since the natural bijection is continuous at the crossing point in both direction. But a friend of mine told me it was wrong.
Another related question which appears on Hatcher's text is the union of circles centered $(n,0)$ with radius $n$. Again, it is claimed that it is not homeomorphic to the infinite wedge $bigvee _infty S^1 $, and I can't figure out the reason.
Could anybody explain the two baffling questions please? Thanks!!
general-topology algebraic-topology homotopy-theory
add a comment |
up vote
0
down vote
favorite
As is described in the title, I believe $ { y = x/n : n in mathbb N+ }$ is homeomorphic to the infinite wedge sum $bigvee _infty mathbb R $, since the natural bijection is continuous at the crossing point in both direction. But a friend of mine told me it was wrong.
Another related question which appears on Hatcher's text is the union of circles centered $(n,0)$ with radius $n$. Again, it is claimed that it is not homeomorphic to the infinite wedge $bigvee _infty S^1 $, and I can't figure out the reason.
Could anybody explain the two baffling questions please? Thanks!!
general-topology algebraic-topology homotopy-theory
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
As is described in the title, I believe $ { y = x/n : n in mathbb N+ }$ is homeomorphic to the infinite wedge sum $bigvee _infty mathbb R $, since the natural bijection is continuous at the crossing point in both direction. But a friend of mine told me it was wrong.
Another related question which appears on Hatcher's text is the union of circles centered $(n,0)$ with radius $n$. Again, it is claimed that it is not homeomorphic to the infinite wedge $bigvee _infty S^1 $, and I can't figure out the reason.
Could anybody explain the two baffling questions please? Thanks!!
general-topology algebraic-topology homotopy-theory
As is described in the title, I believe $ { y = x/n : n in mathbb N+ }$ is homeomorphic to the infinite wedge sum $bigvee _infty mathbb R $, since the natural bijection is continuous at the crossing point in both direction. But a friend of mine told me it was wrong.
Another related question which appears on Hatcher's text is the union of circles centered $(n,0)$ with radius $n$. Again, it is claimed that it is not homeomorphic to the infinite wedge $bigvee _infty S^1 $, and I can't figure out the reason.
Could anybody explain the two baffling questions please? Thanks!!
general-topology algebraic-topology homotopy-theory
general-topology algebraic-topology homotopy-theory
asked 1 hour ago
Dromeda
233
233
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
In both cases the subspace topology that your union inherits from the plane is metrizable.
The corresponding wedge, a quotient of the union, is not. At the vertex the quotient does not have a countable neighbourhood base: given a countable sequence $langle U_n:ninmathbb{N}rangle$ of neighbourhoods take in the $k$th space a neighbourhood $O_k$ of the point corresponding to the vertex that is a proper subset of $bigcap_{nle k}U_n$. Then the $O_k$ determine a neighbourhood $O$ of the vertex that contains none of the $U_n$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
In both cases the subspace topology that your union inherits from the plane is metrizable.
The corresponding wedge, a quotient of the union, is not. At the vertex the quotient does not have a countable neighbourhood base: given a countable sequence $langle U_n:ninmathbb{N}rangle$ of neighbourhoods take in the $k$th space a neighbourhood $O_k$ of the point corresponding to the vertex that is a proper subset of $bigcap_{nle k}U_n$. Then the $O_k$ determine a neighbourhood $O$ of the vertex that contains none of the $U_n$.
add a comment |
up vote
0
down vote
In both cases the subspace topology that your union inherits from the plane is metrizable.
The corresponding wedge, a quotient of the union, is not. At the vertex the quotient does not have a countable neighbourhood base: given a countable sequence $langle U_n:ninmathbb{N}rangle$ of neighbourhoods take in the $k$th space a neighbourhood $O_k$ of the point corresponding to the vertex that is a proper subset of $bigcap_{nle k}U_n$. Then the $O_k$ determine a neighbourhood $O$ of the vertex that contains none of the $U_n$.
add a comment |
up vote
0
down vote
up vote
0
down vote
In both cases the subspace topology that your union inherits from the plane is metrizable.
The corresponding wedge, a quotient of the union, is not. At the vertex the quotient does not have a countable neighbourhood base: given a countable sequence $langle U_n:ninmathbb{N}rangle$ of neighbourhoods take in the $k$th space a neighbourhood $O_k$ of the point corresponding to the vertex that is a proper subset of $bigcap_{nle k}U_n$. Then the $O_k$ determine a neighbourhood $O$ of the vertex that contains none of the $U_n$.
In both cases the subspace topology that your union inherits from the plane is metrizable.
The corresponding wedge, a quotient of the union, is not. At the vertex the quotient does not have a countable neighbourhood base: given a countable sequence $langle U_n:ninmathbb{N}rangle$ of neighbourhoods take in the $k$th space a neighbourhood $O_k$ of the point corresponding to the vertex that is a proper subset of $bigcap_{nle k}U_n$. Then the $O_k$ determine a neighbourhood $O$ of the vertex that contains none of the $U_n$.
answered 1 hour ago
hartkp
1,24465
1,24465
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004672%2funion-of-lines-y-x-n-n-in-mathbb-n-not-homeomorphic-to-infinite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
