Use comparison test to show $sumfrac{3^n+7^n}{3^n+8^n}$ converges.
up vote
0
down vote
favorite
I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$
sequences-and-series
add a comment |
up vote
0
down vote
favorite
I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$
sequences-and-series
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$
sequences-and-series
I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$
sequences-and-series
sequences-and-series
asked 14 hours ago
m.bazza
827
827
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
up vote
2
down vote
Notice
$$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$
Should I say more?
add a comment |
up vote
0
down vote
We have that eventually
$$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$
as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed
$$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$
add a comment |
up vote
0
down vote
It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.
In your case:
$$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Notice
$$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$
Should I say more?
add a comment |
up vote
2
down vote
Notice
$$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$
Should I say more?
add a comment |
up vote
2
down vote
up vote
2
down vote
Notice
$$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$
Should I say more?
Notice
$$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$
Should I say more?
answered 14 hours ago
Jimmy Sabater
1,769216
1,769216
add a comment |
add a comment |
up vote
0
down vote
We have that eventually
$$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$
as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed
$$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$
add a comment |
up vote
0
down vote
We have that eventually
$$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$
as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed
$$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$
add a comment |
up vote
0
down vote
up vote
0
down vote
We have that eventually
$$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$
as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed
$$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$
We have that eventually
$$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$
as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed
$$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$
answered 14 hours ago
gimusi
85.4k74293
85.4k74293
add a comment |
add a comment |
up vote
0
down vote
It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.
In your case:
$$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$
add a comment |
up vote
0
down vote
It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.
In your case:
$$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$
add a comment |
up vote
0
down vote
up vote
0
down vote
It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.
In your case:
$$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$
It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.
In your case:
$$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$
answered 3 hours ago
trancelocation
7,9311519
7,9311519
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004176%2fuse-comparison-test-to-show-sum-frac3n7n3n8n-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown