Use comparison test to show $sumfrac{3^n+7^n}{3^n+8^n}$ converges.











up vote
0
down vote

favorite












I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$










      share|cite|improve this question













      I want to manipulate it such that $frac{3^n+7^n}{3^n+8^n}leq x^n$ for some $x<1$







      sequences-and-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 14 hours ago









      m.bazza

      827




      827






















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote













          Notice



          $$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$



          Should I say more?






          share|cite|improve this answer




























            up vote
            0
            down vote













            We have that eventually



            $$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$



            as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed



            $$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$






            share|cite|improve this answer




























              up vote
              0
              down vote













              It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.



              In your case:
              $$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$






              share|cite|improve this answer





















                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004176%2fuse-comparison-test-to-show-sum-frac3n7n3n8n-converges%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                2
                down vote













                Notice



                $$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$



                Should I say more?






                share|cite|improve this answer

























                  up vote
                  2
                  down vote













                  Notice



                  $$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$



                  Should I say more?






                  share|cite|improve this answer























                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Notice



                    $$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$



                    Should I say more?






                    share|cite|improve this answer












                    Notice



                    $$ frac{ 3^n + 7^n }{3^n + 8^n} leqfrac{3^n+7^n}{8^n} = left( frac{3}{8} right)^n + left( frac{7}{8} right)^n $$



                    Should I say more?







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 14 hours ago









                    Jimmy Sabater

                    1,769216




                    1,769216






















                        up vote
                        0
                        down vote













                        We have that eventually



                        $$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$



                        as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed



                        $$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          We have that eventually



                          $$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$



                          as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed



                          $$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            We have that eventually



                            $$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$



                            as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed



                            $$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$






                            share|cite|improve this answer












                            We have that eventually



                            $$frac{3^n+7^n}{3^n+8^n}leq frac{(7.5)^n}{8^n}=left(frac{7.5}{8}right)^n$$



                            as an alternative by limit comparison test with $sum frac{7^n}{8^n}$ indeed



                            $$frac{frac{3^n+7^n}{3^n+8^n}}{frac{7^n}{8^n}}=frac{8^n(3^n+7^n)}{7^n(3^n+8^n)} to 1$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 14 hours ago









                            gimusi

                            85.4k74293




                            85.4k74293






















                                up vote
                                0
                                down vote













                                It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.



                                In your case:
                                $$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$






                                share|cite|improve this answer

























                                  up vote
                                  0
                                  down vote













                                  It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.



                                  In your case:
                                  $$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$






                                  share|cite|improve this answer























                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.



                                    In your case:
                                    $$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$






                                    share|cite|improve this answer












                                    It is often much easier and quicker to show $|a_n| leq Ccdot x^n$ with a positive constant $C$.



                                    In your case:
                                    $$color{blue}{frac{3^n+7^n}{3^n+8^n}} = left( frac{7}{8} right)^nfrac{left( frac{3}{7} right)^n + 1}{left( frac{3}{8} right)^n + 1} color{blue}{<} left( frac{7}{8} right)^n cdot frac{frac{1}{2} + 1}{1} =color{blue}{frac{3}{2} cdot left( frac{7}{8} right)^n}$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 3 hours ago









                                    trancelocation

                                    7,9311519




                                    7,9311519






























                                         

                                        draft saved


                                        draft discarded



















































                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004176%2fuse-comparison-test-to-show-sum-frac3n7n3n8n-converges%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                        How to fix TextFormField cause rebuild widget in Flutter