If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$, then $sin 5°+sin 10°+sin15°+cdots+sin 175°=?$












5












$begingroup$


I'm stuck in this question




If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$



$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$




I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$



But, I didn't catch a hint here.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
    $endgroup$
    – Thomas Shelby
    Jan 4 at 12:20












  • $begingroup$
    You can link to your question more easier than anybody.
    $endgroup$
    – kelalaka
    Jan 4 at 15:02










  • $begingroup$
    math.stackexchange.com/questions/17966/…
    $endgroup$
    – lab bhattacharjee
    Jan 4 at 19:47
















5












$begingroup$


I'm stuck in this question




If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$



$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$




I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$



But, I didn't catch a hint here.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
    $endgroup$
    – Thomas Shelby
    Jan 4 at 12:20












  • $begingroup$
    You can link to your question more easier than anybody.
    $endgroup$
    – kelalaka
    Jan 4 at 15:02










  • $begingroup$
    math.stackexchange.com/questions/17966/…
    $endgroup$
    – lab bhattacharjee
    Jan 4 at 19:47














5












5








5


0



$begingroup$


I'm stuck in this question




If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$



$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$




I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$



But, I didn't catch a hint here.










share|cite|improve this question











$endgroup$




I'm stuck in this question




If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$



$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$




I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$



But, I didn't catch a hint here.







algebra-precalculus trigonometry summation contest-math






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 4 at 11:29









Blue

47.8k870152




47.8k870152










asked Jan 4 at 11:22









BeginnerBeginner

34110




34110








  • 1




    $begingroup$
    $sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
    $endgroup$
    – Thomas Shelby
    Jan 4 at 12:20












  • $begingroup$
    You can link to your question more easier than anybody.
    $endgroup$
    – kelalaka
    Jan 4 at 15:02










  • $begingroup$
    math.stackexchange.com/questions/17966/…
    $endgroup$
    – lab bhattacharjee
    Jan 4 at 19:47














  • 1




    $begingroup$
    $sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
    $endgroup$
    – Thomas Shelby
    Jan 4 at 12:20












  • $begingroup$
    You can link to your question more easier than anybody.
    $endgroup$
    – kelalaka
    Jan 4 at 15:02










  • $begingroup$
    math.stackexchange.com/questions/17966/…
    $endgroup$
    – lab bhattacharjee
    Jan 4 at 19:47








1




1




$begingroup$
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
$endgroup$
– Thomas Shelby
Jan 4 at 12:20






$begingroup$
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
$endgroup$
– Thomas Shelby
Jan 4 at 12:20














$begingroup$
You can link to your question more easier than anybody.
$endgroup$
– kelalaka
Jan 4 at 15:02




$begingroup$
You can link to your question more easier than anybody.
$endgroup$
– kelalaka
Jan 4 at 15:02












$begingroup$
math.stackexchange.com/questions/17966/…
$endgroup$
– lab bhattacharjee
Jan 4 at 19:47




$begingroup$
math.stackexchange.com/questions/17966/…
$endgroup$
– lab bhattacharjee
Jan 4 at 19:47










2 Answers
2






active

oldest

votes


















3












$begingroup$

Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$

and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$

Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$

The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.



Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$



gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (+1) Many thanks. I hope we can complete.
    $endgroup$
    – Beginner
    Jan 4 at 12:19










  • $begingroup$
    $frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
    $endgroup$
    – Aleksas Domarkas
    Jan 4 at 12:43






  • 1




    $begingroup$
    @Beginner I completed that approach.
    $endgroup$
    – Andreas
    Jan 4 at 12:59



















1












$begingroup$

Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,



$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$



$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$



If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$



$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$



Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for answer.
    $endgroup$
    – Beginner
    Jan 5 at 14:03











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061540%2fif-sin-5-sin-10-sin15-cdots-sin-40-a-then-sin-5-sin-10-sin15%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$

and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$

Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$

The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.



Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$



gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (+1) Many thanks. I hope we can complete.
    $endgroup$
    – Beginner
    Jan 4 at 12:19










  • $begingroup$
    $frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
    $endgroup$
    – Aleksas Domarkas
    Jan 4 at 12:43






  • 1




    $begingroup$
    @Beginner I completed that approach.
    $endgroup$
    – Andreas
    Jan 4 at 12:59
















3












$begingroup$

Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$

and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$

Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$

The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.



Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$



gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (+1) Many thanks. I hope we can complete.
    $endgroup$
    – Beginner
    Jan 4 at 12:19










  • $begingroup$
    $frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
    $endgroup$
    – Aleksas Domarkas
    Jan 4 at 12:43






  • 1




    $begingroup$
    @Beginner I completed that approach.
    $endgroup$
    – Andreas
    Jan 4 at 12:59














3












3








3





$begingroup$

Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$

and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$

Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$

The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.



Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$



gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$






share|cite|improve this answer











$endgroup$



Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$

and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$

Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$

The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.



Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$



gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 4 at 13:32

























answered Jan 4 at 12:05









AndreasAndreas

7,8921037




7,8921037












  • $begingroup$
    (+1) Many thanks. I hope we can complete.
    $endgroup$
    – Beginner
    Jan 4 at 12:19










  • $begingroup$
    $frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
    $endgroup$
    – Aleksas Domarkas
    Jan 4 at 12:43






  • 1




    $begingroup$
    @Beginner I completed that approach.
    $endgroup$
    – Andreas
    Jan 4 at 12:59


















  • $begingroup$
    (+1) Many thanks. I hope we can complete.
    $endgroup$
    – Beginner
    Jan 4 at 12:19










  • $begingroup$
    $frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
    $endgroup$
    – Aleksas Domarkas
    Jan 4 at 12:43






  • 1




    $begingroup$
    @Beginner I completed that approach.
    $endgroup$
    – Andreas
    Jan 4 at 12:59
















$begingroup$
(+1) Many thanks. I hope we can complete.
$endgroup$
– Beginner
Jan 4 at 12:19




$begingroup$
(+1) Many thanks. I hope we can complete.
$endgroup$
– Beginner
Jan 4 at 12:19












$begingroup$
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
$endgroup$
– Aleksas Domarkas
Jan 4 at 12:43




$begingroup$
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
$endgroup$
– Aleksas Domarkas
Jan 4 at 12:43




1




1




$begingroup$
@Beginner I completed that approach.
$endgroup$
– Andreas
Jan 4 at 12:59




$begingroup$
@Beginner I completed that approach.
$endgroup$
– Andreas
Jan 4 at 12:59











1












$begingroup$

Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,



$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$



$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$



If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$



$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$



Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for answer.
    $endgroup$
    – Beginner
    Jan 5 at 14:03
















1












$begingroup$

Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,



$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$



$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$



If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$



$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$



Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for answer.
    $endgroup$
    – Beginner
    Jan 5 at 14:03














1












1








1





$begingroup$

Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,



$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$



$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$



If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$



$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$



Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$






share|cite|improve this answer









$endgroup$



Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,



$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$



$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$



If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$



$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$



Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 5 at 13:25









lab bhattacharjeelab bhattacharjee

224k15156274




224k15156274












  • $begingroup$
    Thank you for answer.
    $endgroup$
    – Beginner
    Jan 5 at 14:03


















  • $begingroup$
    Thank you for answer.
    $endgroup$
    – Beginner
    Jan 5 at 14:03
















$begingroup$
Thank you for answer.
$endgroup$
– Beginner
Jan 5 at 14:03




$begingroup$
Thank you for answer.
$endgroup$
– Beginner
Jan 5 at 14:03


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061540%2fif-sin-5-sin-10-sin15-cdots-sin-40-a-then-sin-5-sin-10-sin15%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

'app-layout' is not a known element: how to share Component with different Modules