Orthogonality of Stirling numbers - simplify a variant thereof
$begingroup$
Stirling numbers satisfy the following orthogonality condition. For $k<n$:
$$ sum_{i=k}^n S(n,i) s(i,k)=0,$$
where $s(i,k)$ and $S(n,i)$ are Stirling numbers of the first and second kind, respectively.
My question: Is there a way to simplify the following
$$ sum_{i=k}^n frac{S(n,i) s(i,k)}{2^i}.$$
combinatorics stirling-numbers
$endgroup$
add a comment |
$begingroup$
Stirling numbers satisfy the following orthogonality condition. For $k<n$:
$$ sum_{i=k}^n S(n,i) s(i,k)=0,$$
where $s(i,k)$ and $S(n,i)$ are Stirling numbers of the first and second kind, respectively.
My question: Is there a way to simplify the following
$$ sum_{i=k}^n frac{S(n,i) s(i,k)}{2^i}.$$
combinatorics stirling-numbers
$endgroup$
$begingroup$
Is there any reason to believe that this can be simplified?
$endgroup$
– Mike Earnest
Jan 7 at 19:59
add a comment |
$begingroup$
Stirling numbers satisfy the following orthogonality condition. For $k<n$:
$$ sum_{i=k}^n S(n,i) s(i,k)=0,$$
where $s(i,k)$ and $S(n,i)$ are Stirling numbers of the first and second kind, respectively.
My question: Is there a way to simplify the following
$$ sum_{i=k}^n frac{S(n,i) s(i,k)}{2^i}.$$
combinatorics stirling-numbers
$endgroup$
Stirling numbers satisfy the following orthogonality condition. For $k<n$:
$$ sum_{i=k}^n S(n,i) s(i,k)=0,$$
where $s(i,k)$ and $S(n,i)$ are Stirling numbers of the first and second kind, respectively.
My question: Is there a way to simplify the following
$$ sum_{i=k}^n frac{S(n,i) s(i,k)}{2^i}.$$
combinatorics stirling-numbers
combinatorics stirling-numbers
asked Jan 4 at 11:55
TeddyTeddy
1,252816
1,252816
$begingroup$
Is there any reason to believe that this can be simplified?
$endgroup$
– Mike Earnest
Jan 7 at 19:59
add a comment |
$begingroup$
Is there any reason to believe that this can be simplified?
$endgroup$
– Mike Earnest
Jan 7 at 19:59
$begingroup$
Is there any reason to believe that this can be simplified?
$endgroup$
– Mike Earnest
Jan 7 at 19:59
$begingroup$
Is there any reason to believe that this can be simplified?
$endgroup$
– Mike Earnest
Jan 7 at 19:59
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061570%2forthogonality-of-stirling-numbers-simplify-a-variant-thereof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061570%2forthogonality-of-stirling-numbers-simplify-a-variant-thereof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is there any reason to believe that this can be simplified?
$endgroup$
– Mike Earnest
Jan 7 at 19:59