Prove that $forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$












1












$begingroup$



Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$




My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!





My attempt:



By definition, we have:




  • $xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$


  • $ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$


  • $(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$


  • $xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$



It suffices to prove that $A=B$.



Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.



Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.




  • $ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.


  • Similarly, $ain Bimplies ain A$.



Hence $A=B$ and thus $inf A=inf B$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
    $endgroup$
    – Did
    Jan 3 at 17:55
















1












$begingroup$



Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$




My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!





My attempt:



By definition, we have:




  • $xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$


  • $ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$


  • $(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$


  • $xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$



It suffices to prove that $A=B$.



Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.



Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.




  • $ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.


  • Similarly, $ain Bimplies ain A$.



Hence $A=B$ and thus $inf A=inf B$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
    $endgroup$
    – Did
    Jan 3 at 17:55














1












1








1





$begingroup$



Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$




My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!





My attempt:



By definition, we have:




  • $xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$


  • $ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$


  • $(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$


  • $xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$



It suffices to prove that $A=B$.



Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.



Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.




  • $ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.


  • Similarly, $ain Bimplies ain A$.



Hence $A=B$ and thus $inf A=inf B$.










share|cite|improve this question









$endgroup$





Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$




My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!





My attempt:



By definition, we have:




  • $xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$


  • $ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$


  • $(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$


  • $xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$



It suffices to prove that $A=B$.



Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.



Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.




  • $ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.


  • Similarly, $ain Bimplies ain A$.



Hence $A=B$ and thus $inf A=inf B$.







proof-verification real-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 3 at 17:32









Le Anh DungLe Anh Dung

1,0921521




1,0921521








  • 1




    $begingroup$
    The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
    $endgroup$
    – Did
    Jan 3 at 17:55














  • 1




    $begingroup$
    The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
    $endgroup$
    – Did
    Jan 3 at 17:55








1




1




$begingroup$
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
$endgroup$
– Did
Jan 3 at 17:55




$begingroup$
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
$endgroup$
– Did
Jan 3 at 17:55










1 Answer
1






active

oldest

votes


















0












$begingroup$

We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$



I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.





My attempt:



First, we have some useful observations:




  • $min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.


  • $pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.



By definition, we have:




  • $xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$


  • $xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$



Hence $xcdot (y+z) = xcdot y +xcdot z$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060808%2fprove-that-forall-x-y-z-in-bbb-rx-cdot-y-cdot-z-x-cdot-y-cdot-z%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$



    I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.





    My attempt:



    First, we have some useful observations:




    • $min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.


    • $pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.



    By definition, we have:




    • $xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$


    • $xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$



    Hence $xcdot (y+z) = xcdot y +xcdot z$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$



      I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.





      My attempt:



      First, we have some useful observations:




      • $min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.


      • $pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.



      By definition, we have:




      • $xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$


      • $xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$



      Hence $xcdot (y+z) = xcdot y +xcdot z$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$



        I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.





        My attempt:



        First, we have some useful observations:




        • $min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.


        • $pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.



        By definition, we have:




        • $xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$


        • $xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$



        Hence $xcdot (y+z) = xcdot y +xcdot z$






        share|cite|improve this answer











        $endgroup$



        We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$



        I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.





        My attempt:



        First, we have some useful observations:




        • $min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.


        • $pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.



        By definition, we have:




        • $xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$


        • $xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$



        Hence $xcdot (y+z) = xcdot y +xcdot z$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 4 at 4:30

























        answered Jan 4 at 3:34









        Le Anh DungLe Anh Dung

        1,0921521




        1,0921521






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060808%2fprove-that-forall-x-y-z-in-bbb-rx-cdot-y-cdot-z-x-cdot-y-cdot-z%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith