Proving that $sumlimits_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$












3












$begingroup$


Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
    $endgroup$
    – Lucian
    Jan 16 '15 at 19:18


















3












$begingroup$


Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
    $endgroup$
    – Lucian
    Jan 16 '15 at 19:18
















3












3








3


1



$begingroup$


Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.










share|cite|improve this question











$endgroup$




Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 20:46









Did

247k23222458




247k23222458










asked Jan 16 '15 at 18:35







user187581















  • 1




    $begingroup$
    Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
    $endgroup$
    – Lucian
    Jan 16 '15 at 19:18
















  • 1




    $begingroup$
    Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
    $endgroup$
    – Lucian
    Jan 16 '15 at 19:18










1




1




$begingroup$
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
$endgroup$
– Lucian
Jan 16 '15 at 19:18






$begingroup$
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
$endgroup$
– Lucian
Jan 16 '15 at 19:18












2 Answers
2






active

oldest

votes


















22












$begingroup$

Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
so your series is just
$$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$






share|cite|improve this answer









$endgroup$





















    9












    $begingroup$

    $$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$



    Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1107024%2fproving-that-sum-limits-n-0-infty-frac12n-sqrte%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown
























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      22












      $begingroup$

      Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
      so your series is just
      $$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$






      share|cite|improve this answer









      $endgroup$


















        22












        $begingroup$

        Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
        so your series is just
        $$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$






        share|cite|improve this answer









        $endgroup$
















          22












          22








          22





          $begingroup$

          Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
          so your series is just
          $$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$






          share|cite|improve this answer









          $endgroup$



          Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
          so your series is just
          $$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 16 '15 at 18:38









          CrostulCrostul

          27.8k22352




          27.8k22352























              9












              $begingroup$

              $$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$



              Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$






              share|cite|improve this answer









              $endgroup$


















                9












                $begingroup$

                $$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$



                Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$






                share|cite|improve this answer









                $endgroup$
















                  9












                  9








                  9





                  $begingroup$

                  $$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$



                  Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$






                  share|cite|improve this answer









                  $endgroup$



                  $$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$



                  Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 16 '15 at 18:38









                  Petite EtincellePetite Etincelle

                  12.4k12148




                  12.4k12148






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1107024%2fproving-that-sum-limits-n-0-infty-frac12n-sqrte%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      'app-layout' is not a known element: how to share Component with different Modules

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      WPF add header to Image with URL pettitions [duplicate]