Prove that $int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} left(frac{f(x_{i+1})-f(x_i)}{h}right)^2 = O(h^2) $












0












$begingroup$


Prove that:



$int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $



Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$



First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$



By Taylor series we know:



$f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$



(Where $ xleqalphaleq x+h$)



So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$



Then I got stuck










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Prove that:



    $int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $



    Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$



    First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$



    By Taylor series we know:



    $f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$



    (Where $ xleqalphaleq x+h$)



    So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$



    Then I got stuck










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      Prove that:



      $int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $



      Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$



      First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$



      By Taylor series we know:



      $f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$



      (Where $ xleqalphaleq x+h$)



      So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$



      Then I got stuck










      share|cite|improve this question











      $endgroup$




      Prove that:



      $int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $



      Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$



      First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$



      By Taylor series we know:



      $f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$



      (Where $ xleqalphaleq x+h$)



      So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$



      Then I got stuck







      integration numerical-methods






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 20:52









      jameselmore

      4,39432035




      4,39432035










      asked Jan 11 at 18:00









      useruser

      52




      52






















          3 Answers
          3






          active

          oldest

          votes


















          0












          $begingroup$

          We have
          begin{align*}
          A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
          &= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
          end{align*}

          Now, for $x in [x_k, x_{k+1}]$,
          begin{align*}
          [f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
          end{align*}

          and so
          begin{align*}
          color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
          &=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
          end{align*}

          Next,
          begin{align*}
          f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
          end{align*}

          and so
          begin{align*}
          color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
          &= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
          end{align*}

          Therefore,
          begin{align*}
          color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
          end{align*}

          Finally,
          begin{align*}
          A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
          end{align*}






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.





            By the mean value theorem,
            $$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
            for some $x_0 in [x_i, x_{i+1}]$.



            Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
            This implies
            $$|(f'(x))^2 - (f'(x_0))^2|
            le 2 M^2 |f'(x) - f'(x_0)|
            le 2 M^3 h$$

            for all $x in [x_i, x_{i+1}]$.
            Thus
            $$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
            le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$

            Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
              $$
              int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
              $$

              By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
              begin{align}
              min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
              &leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
              &leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
              end{align}

              In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
              $$
              int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
              lefrac{|f''|_infty^2}{12}h^3
              $$

              and in the sum
              $$
              int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
              lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
              $$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070153%2fprove-that-int-ab-fx2dx-h-sum-i-0n-1-left-fracfx-i1-fx%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                0












                $begingroup$

                We have
                begin{align*}
                A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
                &= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
                end{align*}

                Now, for $x in [x_k, x_{k+1}]$,
                begin{align*}
                [f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
                end{align*}

                and so
                begin{align*}
                color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
                &=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
                end{align*}

                Next,
                begin{align*}
                f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
                end{align*}

                and so
                begin{align*}
                color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
                &= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
                end{align*}

                Therefore,
                begin{align*}
                color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
                end{align*}

                Finally,
                begin{align*}
                A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
                end{align*}






                share|cite|improve this answer











                $endgroup$


















                  0












                  $begingroup$

                  We have
                  begin{align*}
                  A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
                  &= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
                  end{align*}

                  Now, for $x in [x_k, x_{k+1}]$,
                  begin{align*}
                  [f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
                  end{align*}

                  and so
                  begin{align*}
                  color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
                  &=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
                  end{align*}

                  Next,
                  begin{align*}
                  f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
                  end{align*}

                  and so
                  begin{align*}
                  color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
                  &= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
                  end{align*}

                  Therefore,
                  begin{align*}
                  color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
                  end{align*}

                  Finally,
                  begin{align*}
                  A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
                  end{align*}






                  share|cite|improve this answer











                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    We have
                    begin{align*}
                    A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
                    &= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
                    end{align*}

                    Now, for $x in [x_k, x_{k+1}]$,
                    begin{align*}
                    [f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
                    end{align*}

                    and so
                    begin{align*}
                    color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
                    &=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
                    end{align*}

                    Next,
                    begin{align*}
                    f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
                    end{align*}

                    and so
                    begin{align*}
                    color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
                    &= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
                    end{align*}

                    Therefore,
                    begin{align*}
                    color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
                    end{align*}

                    Finally,
                    begin{align*}
                    A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
                    end{align*}






                    share|cite|improve this answer











                    $endgroup$



                    We have
                    begin{align*}
                    A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
                    &= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
                    end{align*}

                    Now, for $x in [x_k, x_{k+1}]$,
                    begin{align*}
                    [f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
                    end{align*}

                    and so
                    begin{align*}
                    color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
                    &=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
                    end{align*}

                    Next,
                    begin{align*}
                    f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
                    end{align*}

                    and so
                    begin{align*}
                    color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
                    &= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
                    end{align*}

                    Therefore,
                    begin{align*}
                    color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
                    end{align*}

                    Finally,
                    begin{align*}
                    A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
                    end{align*}







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 11 at 22:25

























                    answered Jan 11 at 22:20









                    Tom ChenTom Chen

                    913513




                    913513























                        0












                        $begingroup$

                        I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.





                        By the mean value theorem,
                        $$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
                        for some $x_0 in [x_i, x_{i+1}]$.



                        Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
                        This implies
                        $$|(f'(x))^2 - (f'(x_0))^2|
                        le 2 M^2 |f'(x) - f'(x_0)|
                        le 2 M^3 h$$

                        for all $x in [x_i, x_{i+1}]$.
                        Thus
                        $$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
                        le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$

                        Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.





                          By the mean value theorem,
                          $$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
                          for some $x_0 in [x_i, x_{i+1}]$.



                          Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
                          This implies
                          $$|(f'(x))^2 - (f'(x_0))^2|
                          le 2 M^2 |f'(x) - f'(x_0)|
                          le 2 M^3 h$$

                          for all $x in [x_i, x_{i+1}]$.
                          Thus
                          $$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
                          le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$

                          Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.





                            By the mean value theorem,
                            $$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
                            for some $x_0 in [x_i, x_{i+1}]$.



                            Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
                            This implies
                            $$|(f'(x))^2 - (f'(x_0))^2|
                            le 2 M^2 |f'(x) - f'(x_0)|
                            le 2 M^3 h$$

                            for all $x in [x_i, x_{i+1}]$.
                            Thus
                            $$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
                            le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$

                            Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.






                            share|cite|improve this answer









                            $endgroup$



                            I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.





                            By the mean value theorem,
                            $$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
                            for some $x_0 in [x_i, x_{i+1}]$.



                            Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
                            This implies
                            $$|(f'(x))^2 - (f'(x_0))^2|
                            le 2 M^2 |f'(x) - f'(x_0)|
                            le 2 M^3 h$$

                            for all $x in [x_i, x_{i+1}]$.
                            Thus
                            $$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
                            le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$

                            Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 11 at 19:54









                            angryavianangryavian

                            40.8k23380




                            40.8k23380























                                0












                                $begingroup$

                                Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
                                $$
                                int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
                                $$

                                By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
                                begin{align}
                                min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
                                &leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
                                &leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
                                end{align}

                                In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
                                $$
                                int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
                                lefrac{|f''|_infty^2}{12}h^3
                                $$

                                and in the sum
                                $$
                                int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
                                lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
                                $$






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
                                  $$
                                  int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
                                  $$

                                  By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
                                  begin{align}
                                  min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
                                  &leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
                                  &leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
                                  end{align}

                                  In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
                                  $$
                                  int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
                                  lefrac{|f''|_infty^2}{12}h^3
                                  $$

                                  and in the sum
                                  $$
                                  int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
                                  lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
                                    $$
                                    int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
                                    $$

                                    By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
                                    begin{align}
                                    min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
                                    &leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
                                    &leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
                                    end{align}

                                    In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
                                    $$
                                    int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
                                    lefrac{|f''|_infty^2}{12}h^3
                                    $$

                                    and in the sum
                                    $$
                                    int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
                                    lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$



                                    Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
                                    $$
                                    int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
                                    $$

                                    By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
                                    begin{align}
                                    min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
                                    &leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
                                    &leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
                                    end{align}

                                    In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
                                    $$
                                    int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
                                    lefrac{|f''|_infty^2}{12}h^3
                                    $$

                                    and in the sum
                                    $$
                                    int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
                                    lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
                                    $$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 12 at 8:27









                                    LutzLLutzL

                                    58.1k42054




                                    58.1k42054






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070153%2fprove-that-int-ab-fx2dx-h-sum-i-0n-1-left-fracfx-i1-fx%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        How to fix TextFormField cause rebuild widget in Flutter

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith