Prove that $int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} left(frac{f(x_{i+1})-f(x_i)}{h}right)^2 = O(h^2) $
$begingroup$
Prove that:
$int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $
Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$
First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$
By Taylor series we know:
$f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$
(Where $ xleqalphaleq x+h$)
So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$
Then I got stuck
integration numerical-methods
$endgroup$
add a comment |
$begingroup$
Prove that:
$int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $
Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$
First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$
By Taylor series we know:
$f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$
(Where $ xleqalphaleq x+h$)
So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$
Then I got stuck
integration numerical-methods
$endgroup$
add a comment |
$begingroup$
Prove that:
$int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $
Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$
First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$
By Taylor series we know:
$f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$
(Where $ xleqalphaleq x+h$)
So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$
Then I got stuck
integration numerical-methods
$endgroup$
Prove that:
$int_a^b (f'(x))^2dx - hsum_{i=0}^{n-1} {(frac{f(x_{i+1})-f(x_i)}{h})}^2 = O(h^2) $
Where $h=frac{b-a}{n} , x_k=a+kh$ and $f in C^infty[a,b]$
First I've tried to estimate the following: $int_{x_i}^{x_{i+1}} (f'(x))^2dx - h{left(frac{f(x_{i+1})-f(x_i)}{h}right)}^2$
By Taylor series we know:
$f'(x)=frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)$
(Where $ xleqalphaleq x+h$)
So $int_{x_i}^{x_{i+1}} (f'(x))^2dx = int_{x_i}^{x_{i+1}} left(frac{f(x+h)-f(x)}{h}-frac{h}{2}f''(alpha)right)^2dx$
Then I got stuck
integration numerical-methods
integration numerical-methods
edited Jan 11 at 20:52
jameselmore
4,39432035
4,39432035
asked Jan 11 at 18:00
useruser
52
52
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We have
begin{align*}
A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
&= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
end{align*}
Now, for $x in [x_k, x_{k+1}]$,
begin{align*}
[f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
end{align*}
and so
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
&=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
end{align*}
Next,
begin{align*}
f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
end{align*}
and so
begin{align*}
color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
&= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
end{align*}
Therefore,
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
end{align*}
Finally,
begin{align*}
A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
end{align*}
$endgroup$
add a comment |
$begingroup$
I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.
By the mean value theorem,
$$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
for some $x_0 in [x_i, x_{i+1}]$.
Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
This implies
$$|(f'(x))^2 - (f'(x_0))^2|
le 2 M^2 |f'(x) - f'(x_0)|
le 2 M^3 h$$
for all $x in [x_i, x_{i+1}]$.
Thus
$$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$
Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.
$endgroup$
add a comment |
$begingroup$
Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
$$
int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
$$
By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
begin{align}
min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
&leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
&leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
end{align}
In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
$$
int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}h^3
$$
and in the sum
$$
int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070153%2fprove-that-int-ab-fx2dx-h-sum-i-0n-1-left-fracfx-i1-fx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have
begin{align*}
A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
&= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
end{align*}
Now, for $x in [x_k, x_{k+1}]$,
begin{align*}
[f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
end{align*}
and so
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
&=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
end{align*}
Next,
begin{align*}
f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
end{align*}
and so
begin{align*}
color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
&= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
end{align*}
Therefore,
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
end{align*}
Finally,
begin{align*}
A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
end{align*}
$endgroup$
add a comment |
$begingroup$
We have
begin{align*}
A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
&= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
end{align*}
Now, for $x in [x_k, x_{k+1}]$,
begin{align*}
[f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
end{align*}
and so
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
&=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
end{align*}
Next,
begin{align*}
f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
end{align*}
and so
begin{align*}
color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
&= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
end{align*}
Therefore,
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
end{align*}
Finally,
begin{align*}
A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
end{align*}
$endgroup$
add a comment |
$begingroup$
We have
begin{align*}
A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
&= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
end{align*}
Now, for $x in [x_k, x_{k+1}]$,
begin{align*}
[f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
end{align*}
and so
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
&=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
end{align*}
Next,
begin{align*}
f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
end{align*}
and so
begin{align*}
color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
&= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
end{align*}
Therefore,
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
end{align*}
Finally,
begin{align*}
A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
end{align*}
$endgroup$
We have
begin{align*}
A(x) &overset{text{def}}{=} int_a^b [f'(x)]^2dx - sum_{k=0}^{n-1}left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h \
&= sum_{k=0}^{n-1}left{color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h}right}
end{align*}
Now, for $x in [x_k, x_{k+1}]$,
begin{align*}
[f'(x)]^2 = [f'(x_k)]^2 + 2f'(x_k)f''(x_k)(x - x_k) + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}(x - x_k)^2 + O(h^3)
end{align*}
and so
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} &= color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + {[f''(x_k)]^2 + f'(x_k)f'''(x_k)}cdotfrac{1}{3}h^3 + O(h^4) \
&=color{green}{[f'(x_k)]^2h} + color{orange}{2f'(x_k)f''(x_k)cdotfrac{1}{2}h^2} + O(h^3)
end{align*}
Next,
begin{align*}
f(x_{k+1}) = f(x_k) + hf'(x_k) + frac{h^2}{2}f''(x_k) + O(h^3)
end{align*}
and so
begin{align*}
color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} &= left(f'(x_k) + frac{h}{2}f''(x_k) + O(h^2)right)^2 h \
&= color{green}{[f'(x_k)]^2h} + color{orange}{f'(x_k)f''(x_k)h^2}+O(h^3)
end{align*}
Therefore,
begin{align*}
color{red}{int_{x_k}^{x_{k+1}}[f'(x)]^2 dx} - color{blue}{left(frac{f(x_{k+1}) - f(x_k)}{h}right)^2h} = O(h^3)
end{align*}
Finally,
begin{align*}
A(x) = sum_{k=0}^{n-1}O(h^3) = O(h^2)
end{align*}
edited Jan 11 at 22:25
answered Jan 11 at 22:20


Tom ChenTom Chen
913513
913513
add a comment |
add a comment |
$begingroup$
I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.
By the mean value theorem,
$$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
for some $x_0 in [x_i, x_{i+1}]$.
Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
This implies
$$|(f'(x))^2 - (f'(x_0))^2|
le 2 M^2 |f'(x) - f'(x_0)|
le 2 M^3 h$$
for all $x in [x_i, x_{i+1}]$.
Thus
$$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$
Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.
$endgroup$
add a comment |
$begingroup$
I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.
By the mean value theorem,
$$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
for some $x_0 in [x_i, x_{i+1}]$.
Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
This implies
$$|(f'(x))^2 - (f'(x_0))^2|
le 2 M^2 |f'(x) - f'(x_0)|
le 2 M^3 h$$
for all $x in [x_i, x_{i+1}]$.
Thus
$$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$
Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.
$endgroup$
add a comment |
$begingroup$
I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.
By the mean value theorem,
$$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
for some $x_0 in [x_i, x_{i+1}]$.
Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
This implies
$$|(f'(x))^2 - (f'(x_0))^2|
le 2 M^2 |f'(x) - f'(x_0)|
le 2 M^3 h$$
for all $x in [x_i, x_{i+1}]$.
Thus
$$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$
Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.
$endgroup$
I was only able to get $O(h)$. Perhaps someone cleverer than I can point out where I was loose.
By the mean value theorem,
$$frac{f(x_{i+1}) - f(x_i)}{h} = f'(x_0)$$
for some $x_0 in [x_i, x_{i+1}]$.
Because $f in C^2[a,b]$, there exists $M$ such that $max{|f'(x)|,|f''(x)|} le M$ for all $x in [a,b]$.
This implies
$$|(f'(x))^2 - (f'(x_0))^2|
le 2 M^2 |f'(x) - f'(x_0)|
le 2 M^3 h$$
for all $x in [x_i, x_{i+1}]$.
Thus
$$left|int_{x_i}^{x_{i+1}} (f'(x))^2, dx - h left(frac{f(x_{i+1}) - f(x_i)}{h}right)^2right|
le int_{x_i}^{x_{i+1}} |(f'(x))^2 - (f'(x_0))^2| , dx le 2 M^3 h^2.$$
Summing over $i = 0,1,ldots, n-1$ yields $2M^3 h$.
answered Jan 11 at 19:54
angryavianangryavian
40.8k23380
40.8k23380
add a comment |
add a comment |
$begingroup$
Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
$$
int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
$$
By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
begin{align}
min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
&leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
&leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
end{align}
In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
$$
int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}h^3
$$
and in the sum
$$
int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
$$
$endgroup$
add a comment |
$begingroup$
Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
$$
int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
$$
By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
begin{align}
min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
&leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
&leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
end{align}
In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
$$
int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}h^3
$$
and in the sum
$$
int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
$$
$endgroup$
add a comment |
$begingroup$
Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
$$
int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
$$
By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
begin{align}
min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
&leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
&leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
end{align}
In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
$$
int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}h^3
$$
and in the sum
$$
int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
$$
$endgroup$
Let $g$ be any Lipschitz function. Then the atomar expression in question is the minimum of a quadratic function
$$
int_x^{x+h}g(s)^2ds-frac1hleft(int_x^{x+h}g(s)dsright)^2 = min_{minBbb R}int_x^{x+h}(g(s)-m)^2ds
$$
By the mean value theorem, $m=frac1hint_x^{x+h}g(s)ds$ is equal to one of the function values of $g$.
begin{align}
min_{cin[x,x+h]}int_x^{x+h}(g(s)-g(c))^2ds
&leint_x^{x+h}|g(s)-g(x+h/2)|^2ds\
&leint_x^{x+h}L^2|s-(x+h/2)|^2ds=frac{L^2}{12}h^3
end{align}
In the given case $g=f'$ the Lipschitz constant can be chosen as $L=|f''|_infty$,
$$
int_{x_i}^{x_{i+1}}f'(s)^2ds-hleft(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}h^3
$$
and in the sum
$$
int_{x_0}^{x_n}f'(s)^2ds-hsum_{i=0}^{n-1}left(frac{f(x_{i+1})-f(x_i)}hright)^2
lefrac{|f''|_infty^2}{12}(x_n-x_0)h^2
$$
answered Jan 12 at 8:27
LutzLLutzL
58.1k42054
58.1k42054
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070153%2fprove-that-int-ab-fx2dx-h-sum-i-0n-1-left-fracfx-i1-fx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown