Function which behave having other face
up vote
0
down vote
favorite
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
add a comment |
up vote
0
down vote
favorite
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
probability statistics
edited 25 mins ago
asked yesterday
quickybrown
12
12
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003279%2ffunction-which-behave-having-other-face%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown