Function which behave having other face











up vote
0
down vote

favorite












I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}

and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}

so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}

and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.



This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    I encountered a formula in density of exponential family of distributions,
    begin{eqnarray*}
    f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
    end{eqnarray*}

    and it seemed to me that there is other formula expression of argument of exponential function.
    To be more precise,
    begin{eqnarray*}
    left(
    begin{array}{c}
    alpha(y) \
    gamma(theta) \
    epsilon_1(y,theta)
    end{array}
    right) otimes left(
    begin{array}{c}
    delta(y) \
    beta(theta) \
    epsilon_2(y,theta)
    end{array}
    right)^{mathrm{T}} = left(
    begin{array}{ccc}
    alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
    gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
    epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
    end{array}
    right),
    end{eqnarray*}

    so if there is convenience function $epsilon_1(y,theta)$ such that,
    begin{eqnarray*}
    left{
    begin{array}{l}
    epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
    epsilon_1(y,theta)beta(theta) approx 0
    end{array}
    right.,
    end{eqnarray*}

    and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
    (1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.



    This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
    But existence of such function $epsilon_1$ interested me.
    Do you have any idea of construction of $epsilon_1(y,theta)?$










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I encountered a formula in density of exponential family of distributions,
      begin{eqnarray*}
      f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
      end{eqnarray*}

      and it seemed to me that there is other formula expression of argument of exponential function.
      To be more precise,
      begin{eqnarray*}
      left(
      begin{array}{c}
      alpha(y) \
      gamma(theta) \
      epsilon_1(y,theta)
      end{array}
      right) otimes left(
      begin{array}{c}
      delta(y) \
      beta(theta) \
      epsilon_2(y,theta)
      end{array}
      right)^{mathrm{T}} = left(
      begin{array}{ccc}
      alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
      gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
      epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
      end{array}
      right),
      end{eqnarray*}

      so if there is convenience function $epsilon_1(y,theta)$ such that,
      begin{eqnarray*}
      left{
      begin{array}{l}
      epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
      epsilon_1(y,theta)beta(theta) approx 0
      end{array}
      right.,
      end{eqnarray*}

      and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
      (1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.



      This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
      But existence of such function $epsilon_1$ interested me.
      Do you have any idea of construction of $epsilon_1(y,theta)?$










      share|cite|improve this question















      I encountered a formula in density of exponential family of distributions,
      begin{eqnarray*}
      f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
      end{eqnarray*}

      and it seemed to me that there is other formula expression of argument of exponential function.
      To be more precise,
      begin{eqnarray*}
      left(
      begin{array}{c}
      alpha(y) \
      gamma(theta) \
      epsilon_1(y,theta)
      end{array}
      right) otimes left(
      begin{array}{c}
      delta(y) \
      beta(theta) \
      epsilon_2(y,theta)
      end{array}
      right)^{mathrm{T}} = left(
      begin{array}{ccc}
      alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
      gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
      epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
      end{array}
      right),
      end{eqnarray*}

      so if there is convenience function $epsilon_1(y,theta)$ such that,
      begin{eqnarray*}
      left{
      begin{array}{l}
      epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
      epsilon_1(y,theta)beta(theta) approx 0
      end{array}
      right.,
      end{eqnarray*}

      and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
      (1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.



      This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
      But existence of such function $epsilon_1$ interested me.
      Do you have any idea of construction of $epsilon_1(y,theta)?$







      probability statistics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 25 mins ago

























      asked yesterday









      quickybrown

      12




      12



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003279%2ffunction-which-behave-having-other-face%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003279%2ffunction-which-behave-having-other-face%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith