To find smallest $n$ such that $2^{n} equiv 111 pmod{125} $











up vote
1
down vote

favorite
1













How to find the smallest natural number $n$ such that $2^{n} equiv 111 pmod{125} $.




If we consider $pmod{5}$ then $2^n equiv 1 pmod{5}$. For $n=4k+l$ where $l in left{ 0, 1, 2, 3right}$ we get $16^k 2^l equiv 1 pmod{5}$ and $2^l equiv 1 pmod{5}$, which leads to $l=0$. Therefore, equation reduces to $16^k equiv 111 pmod{125}$.



What to do next?










share|cite|improve this question


















  • 1




    Sage says $n=36$
    – Oldboy
    2 hours ago










  • I think $2^nequiv 111equiv -14pmod{125}$ implies that $2^nequiv 11pmod{25}$
    – 1ENİGMA1
    1 hour ago










  • Maybe, similar implicity used here:math.stackexchange.com/questions/1133616/…
    – 1ENİGMA1
    59 mins ago










  • @1ENİGMA1 That questions solves $n^3equiv888pmod{1000}$, which is quite a different question.
    – Servaes
    8 mins ago















up vote
1
down vote

favorite
1













How to find the smallest natural number $n$ such that $2^{n} equiv 111 pmod{125} $.




If we consider $pmod{5}$ then $2^n equiv 1 pmod{5}$. For $n=4k+l$ where $l in left{ 0, 1, 2, 3right}$ we get $16^k 2^l equiv 1 pmod{5}$ and $2^l equiv 1 pmod{5}$, which leads to $l=0$. Therefore, equation reduces to $16^k equiv 111 pmod{125}$.



What to do next?










share|cite|improve this question


















  • 1




    Sage says $n=36$
    – Oldboy
    2 hours ago










  • I think $2^nequiv 111equiv -14pmod{125}$ implies that $2^nequiv 11pmod{25}$
    – 1ENİGMA1
    1 hour ago










  • Maybe, similar implicity used here:math.stackexchange.com/questions/1133616/…
    – 1ENİGMA1
    59 mins ago










  • @1ENİGMA1 That questions solves $n^3equiv888pmod{1000}$, which is quite a different question.
    – Servaes
    8 mins ago













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1






How to find the smallest natural number $n$ such that $2^{n} equiv 111 pmod{125} $.




If we consider $pmod{5}$ then $2^n equiv 1 pmod{5}$. For $n=4k+l$ where $l in left{ 0, 1, 2, 3right}$ we get $16^k 2^l equiv 1 pmod{5}$ and $2^l equiv 1 pmod{5}$, which leads to $l=0$. Therefore, equation reduces to $16^k equiv 111 pmod{125}$.



What to do next?










share|cite|improve this question














How to find the smallest natural number $n$ such that $2^{n} equiv 111 pmod{125} $.




If we consider $pmod{5}$ then $2^n equiv 1 pmod{5}$. For $n=4k+l$ where $l in left{ 0, 1, 2, 3right}$ we get $16^k 2^l equiv 1 pmod{5}$ and $2^l equiv 1 pmod{5}$, which leads to $l=0$. Therefore, equation reduces to $16^k equiv 111 pmod{125}$.



What to do next?







elementary-number-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









Ghartal

2,85511335




2,85511335








  • 1




    Sage says $n=36$
    – Oldboy
    2 hours ago










  • I think $2^nequiv 111equiv -14pmod{125}$ implies that $2^nequiv 11pmod{25}$
    – 1ENİGMA1
    1 hour ago










  • Maybe, similar implicity used here:math.stackexchange.com/questions/1133616/…
    – 1ENİGMA1
    59 mins ago










  • @1ENİGMA1 That questions solves $n^3equiv888pmod{1000}$, which is quite a different question.
    – Servaes
    8 mins ago














  • 1




    Sage says $n=36$
    – Oldboy
    2 hours ago










  • I think $2^nequiv 111equiv -14pmod{125}$ implies that $2^nequiv 11pmod{25}$
    – 1ENİGMA1
    1 hour ago










  • Maybe, similar implicity used here:math.stackexchange.com/questions/1133616/…
    – 1ENİGMA1
    59 mins ago










  • @1ENİGMA1 That questions solves $n^3equiv888pmod{1000}$, which is quite a different question.
    – Servaes
    8 mins ago








1




1




Sage says $n=36$
– Oldboy
2 hours ago




Sage says $n=36$
– Oldboy
2 hours ago












I think $2^nequiv 111equiv -14pmod{125}$ implies that $2^nequiv 11pmod{25}$
– 1ENİGMA1
1 hour ago




I think $2^nequiv 111equiv -14pmod{125}$ implies that $2^nequiv 11pmod{25}$
– 1ENİGMA1
1 hour ago












Maybe, similar implicity used here:math.stackexchange.com/questions/1133616/…
– 1ENİGMA1
59 mins ago




Maybe, similar implicity used here:math.stackexchange.com/questions/1133616/…
– 1ENİGMA1
59 mins ago












@1ENİGMA1 That questions solves $n^3equiv888pmod{1000}$, which is quite a different question.
– Servaes
8 mins ago




@1ENİGMA1 That questions solves $n^3equiv888pmod{1000}$, which is quite a different question.
– Servaes
8 mins ago










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Next solve $16^kequiv11pmod{25}$, which yields $kequiv4pmod{5}$. Set $k=5m+4$ so that
$$16^kequiv16^4times(16^5)^mequiv36times76^mpmod{125}.$$
Because $36times66equiv1pmod{125}$ we now want to solve
$$76^mequiv66times111equiv76pmod{125},$$
which shows that $m=1$ will do, corresponding to $n=36$.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004670%2fto-find-smallest-n-such-that-2n-equiv-111-pmod125%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Next solve $16^kequiv11pmod{25}$, which yields $kequiv4pmod{5}$. Set $k=5m+4$ so that
    $$16^kequiv16^4times(16^5)^mequiv36times76^mpmod{125}.$$
    Because $36times66equiv1pmod{125}$ we now want to solve
    $$76^mequiv66times111equiv76pmod{125},$$
    which shows that $m=1$ will do, corresponding to $n=36$.






    share|cite|improve this answer

























      up vote
      0
      down vote













      Next solve $16^kequiv11pmod{25}$, which yields $kequiv4pmod{5}$. Set $k=5m+4$ so that
      $$16^kequiv16^4times(16^5)^mequiv36times76^mpmod{125}.$$
      Because $36times66equiv1pmod{125}$ we now want to solve
      $$76^mequiv66times111equiv76pmod{125},$$
      which shows that $m=1$ will do, corresponding to $n=36$.






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        Next solve $16^kequiv11pmod{25}$, which yields $kequiv4pmod{5}$. Set $k=5m+4$ so that
        $$16^kequiv16^4times(16^5)^mequiv36times76^mpmod{125}.$$
        Because $36times66equiv1pmod{125}$ we now want to solve
        $$76^mequiv66times111equiv76pmod{125},$$
        which shows that $m=1$ will do, corresponding to $n=36$.






        share|cite|improve this answer












        Next solve $16^kequiv11pmod{25}$, which yields $kequiv4pmod{5}$. Set $k=5m+4$ so that
        $$16^kequiv16^4times(16^5)^mequiv36times76^mpmod{125}.$$
        Because $36times66equiv1pmod{125}$ we now want to solve
        $$76^mequiv66times111equiv76pmod{125},$$
        which shows that $m=1$ will do, corresponding to $n=36$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 31 mins ago









        Servaes

        20.5k33789




        20.5k33789






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004670%2fto-find-smallest-n-such-that-2n-equiv-111-pmod125%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith