Why does $int_{-infty}^infty R(x) dx$ converge iff the rational function $R(x)$ has degree of denom. at least...
up vote
0
down vote
favorite
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
add a comment |
up vote
0
down vote
favorite
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
9 hours ago
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
9 hours ago
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
9 hours ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
real-analysis complex-analysis rational-functions
edited 8 hours ago
asked 9 hours ago
Cute Brownie
936316
936316
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
9 hours ago
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
9 hours ago
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
9 hours ago
add a comment |
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
9 hours ago
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
9 hours ago
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
9 hours ago
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
9 hours ago
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
9 hours ago
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
9 hours ago
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
9 hours ago
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
9 hours ago
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
9 hours ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
add a comment |
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
add a comment |
up vote
3
down vote
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
answered 9 hours ago
Kavi Rama Murthy
39.9k31750
39.9k31750
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004704%2fwhy-does-int-infty-infty-rx-dx-converge-iff-the-rational-function-rx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
9 hours ago
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
9 hours ago
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
9 hours ago