Describing Cosets in $R/A$











up vote
1
down vote

favorite












In a worked example in my textbook, we are describing the cosets in $R/A$, where $R=mathbb{Z}[i]$, the Gaussian integers, and $A = (2+i)R$, the ideal of all multiples of $2 + i$.



It starts by stating that a typical coset $x$ in $R/A$ will have the form $x=(m + ni) + A$, with integers $m,n$. This makes sense to me, but I do not understand the following part:




"Since $2 + i in A$, we have $i + A = -2 + A$"




Can someone walk me through how we arrive at $i+A = -2+A$?










share|cite|improve this question







New contributor




CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    1
    down vote

    favorite












    In a worked example in my textbook, we are describing the cosets in $R/A$, where $R=mathbb{Z}[i]$, the Gaussian integers, and $A = (2+i)R$, the ideal of all multiples of $2 + i$.



    It starts by stating that a typical coset $x$ in $R/A$ will have the form $x=(m + ni) + A$, with integers $m,n$. This makes sense to me, but I do not understand the following part:




    "Since $2 + i in A$, we have $i + A = -2 + A$"




    Can someone walk me through how we arrive at $i+A = -2+A$?










    share|cite|improve this question







    New contributor




    CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      In a worked example in my textbook, we are describing the cosets in $R/A$, where $R=mathbb{Z}[i]$, the Gaussian integers, and $A = (2+i)R$, the ideal of all multiples of $2 + i$.



      It starts by stating that a typical coset $x$ in $R/A$ will have the form $x=(m + ni) + A$, with integers $m,n$. This makes sense to me, but I do not understand the following part:




      "Since $2 + i in A$, we have $i + A = -2 + A$"




      Can someone walk me through how we arrive at $i+A = -2+A$?










      share|cite|improve this question







      New contributor




      CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      In a worked example in my textbook, we are describing the cosets in $R/A$, where $R=mathbb{Z}[i]$, the Gaussian integers, and $A = (2+i)R$, the ideal of all multiples of $2 + i$.



      It starts by stating that a typical coset $x$ in $R/A$ will have the form $x=(m + ni) + A$, with integers $m,n$. This makes sense to me, but I do not understand the following part:




      "Since $2 + i in A$, we have $i + A = -2 + A$"




      Can someone walk me through how we arrive at $i+A = -2+A$?







      abstract-algebra ring-theory gaussian-integers






      share|cite|improve this question







      New contributor




      CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 22 hours ago









      CurioDidact

      83




      83




      New contributor




      CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      CurioDidact is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          Well, as you have said, an element in $R/A$ looks like $(m+ni) + A$. So $2+i in A$ means $2+i +A = A$ (this is an equality of elements in $R/A$). So $(2+i)+A - (2+A) = A - (2+A)$, giving $i+A = -2+A$. (If you are unsure how to get the last equality, think about what addition (and hence subtraction) means in $R/A$.)






          share|cite|improve this answer





















          • I'm starting to get it, can you elaborate more on why $2 + i + A = A$? Is it because every element of $A$ is a multiple of $2+i$, so adding $2+i$ to any element of A will just give you an element already in $A$?
            – CurioDidact
            21 hours ago










          • yes, that's essentially it. If you are familiar with quotient groups, here's an analogue: if $(G,+)$ is an abelian group, and $H$ is a subgroup and $h$ an element in it, then the coset $h+H$ is same as $H$.
            – dalbouvet
            21 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          CurioDidact is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004511%2fdescribing-cosets-in-r-a%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote



          accepted










          Well, as you have said, an element in $R/A$ looks like $(m+ni) + A$. So $2+i in A$ means $2+i +A = A$ (this is an equality of elements in $R/A$). So $(2+i)+A - (2+A) = A - (2+A)$, giving $i+A = -2+A$. (If you are unsure how to get the last equality, think about what addition (and hence subtraction) means in $R/A$.)






          share|cite|improve this answer





















          • I'm starting to get it, can you elaborate more on why $2 + i + A = A$? Is it because every element of $A$ is a multiple of $2+i$, so adding $2+i$ to any element of A will just give you an element already in $A$?
            – CurioDidact
            21 hours ago










          • yes, that's essentially it. If you are familiar with quotient groups, here's an analogue: if $(G,+)$ is an abelian group, and $H$ is a subgroup and $h$ an element in it, then the coset $h+H$ is same as $H$.
            – dalbouvet
            21 hours ago















          up vote
          0
          down vote



          accepted










          Well, as you have said, an element in $R/A$ looks like $(m+ni) + A$. So $2+i in A$ means $2+i +A = A$ (this is an equality of elements in $R/A$). So $(2+i)+A - (2+A) = A - (2+A)$, giving $i+A = -2+A$. (If you are unsure how to get the last equality, think about what addition (and hence subtraction) means in $R/A$.)






          share|cite|improve this answer





















          • I'm starting to get it, can you elaborate more on why $2 + i + A = A$? Is it because every element of $A$ is a multiple of $2+i$, so adding $2+i$ to any element of A will just give you an element already in $A$?
            – CurioDidact
            21 hours ago










          • yes, that's essentially it. If you are familiar with quotient groups, here's an analogue: if $(G,+)$ is an abelian group, and $H$ is a subgroup and $h$ an element in it, then the coset $h+H$ is same as $H$.
            – dalbouvet
            21 hours ago













          up vote
          0
          down vote



          accepted







          up vote
          0
          down vote



          accepted






          Well, as you have said, an element in $R/A$ looks like $(m+ni) + A$. So $2+i in A$ means $2+i +A = A$ (this is an equality of elements in $R/A$). So $(2+i)+A - (2+A) = A - (2+A)$, giving $i+A = -2+A$. (If you are unsure how to get the last equality, think about what addition (and hence subtraction) means in $R/A$.)






          share|cite|improve this answer












          Well, as you have said, an element in $R/A$ looks like $(m+ni) + A$. So $2+i in A$ means $2+i +A = A$ (this is an equality of elements in $R/A$). So $(2+i)+A - (2+A) = A - (2+A)$, giving $i+A = -2+A$. (If you are unsure how to get the last equality, think about what addition (and hence subtraction) means in $R/A$.)







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 22 hours ago









          dalbouvet

          521110




          521110












          • I'm starting to get it, can you elaborate more on why $2 + i + A = A$? Is it because every element of $A$ is a multiple of $2+i$, so adding $2+i$ to any element of A will just give you an element already in $A$?
            – CurioDidact
            21 hours ago










          • yes, that's essentially it. If you are familiar with quotient groups, here's an analogue: if $(G,+)$ is an abelian group, and $H$ is a subgroup and $h$ an element in it, then the coset $h+H$ is same as $H$.
            – dalbouvet
            21 hours ago


















          • I'm starting to get it, can you elaborate more on why $2 + i + A = A$? Is it because every element of $A$ is a multiple of $2+i$, so adding $2+i$ to any element of A will just give you an element already in $A$?
            – CurioDidact
            21 hours ago










          • yes, that's essentially it. If you are familiar with quotient groups, here's an analogue: if $(G,+)$ is an abelian group, and $H$ is a subgroup and $h$ an element in it, then the coset $h+H$ is same as $H$.
            – dalbouvet
            21 hours ago
















          I'm starting to get it, can you elaborate more on why $2 + i + A = A$? Is it because every element of $A$ is a multiple of $2+i$, so adding $2+i$ to any element of A will just give you an element already in $A$?
          – CurioDidact
          21 hours ago




          I'm starting to get it, can you elaborate more on why $2 + i + A = A$? Is it because every element of $A$ is a multiple of $2+i$, so adding $2+i$ to any element of A will just give you an element already in $A$?
          – CurioDidact
          21 hours ago












          yes, that's essentially it. If you are familiar with quotient groups, here's an analogue: if $(G,+)$ is an abelian group, and $H$ is a subgroup and $h$ an element in it, then the coset $h+H$ is same as $H$.
          – dalbouvet
          21 hours ago




          yes, that's essentially it. If you are familiar with quotient groups, here's an analogue: if $(G,+)$ is an abelian group, and $H$ is a subgroup and $h$ an element in it, then the coset $h+H$ is same as $H$.
          – dalbouvet
          21 hours ago










          CurioDidact is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          CurioDidact is a new contributor. Be nice, and check out our Code of Conduct.













          CurioDidact is a new contributor. Be nice, and check out our Code of Conduct.












          CurioDidact is a new contributor. Be nice, and check out our Code of Conduct.















           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004511%2fdescribing-cosets-in-r-a%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          'app-layout' is not a known element: how to share Component with different Modules