Laurent series of $ frac{z-12}{z^2 + z - 6}$ for $|z-1|>4$
up vote
1
down vote
favorite
How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?
I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$
It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.
Please help? Thank you!
complex-analysis laurent-series
add a comment |
up vote
1
down vote
favorite
How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?
I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$
It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.
Please help? Thank you!
complex-analysis laurent-series
2
BTW, $f$ is not a polynomial.
– lhf
yesterday
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?
I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$
It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.
Please help? Thank you!
complex-analysis laurent-series
How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?
I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$
It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.
Please help? Thank you!
complex-analysis laurent-series
complex-analysis laurent-series
edited yesterday
Robert Z
90k1056128
90k1056128
asked yesterday
Jonelle Yu
1696
1696
2
BTW, $f$ is not a polynomial.
– lhf
yesterday
add a comment |
2
BTW, $f$ is not a polynomial.
– lhf
yesterday
2
2
BTW, $f$ is not a polynomial.
– lhf
yesterday
BTW, $f$ is not a polynomial.
– lhf
yesterday
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
Hint. Starting from your partial fraction decomposition, we have that
$$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.
add a comment |
up vote
0
down vote
Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Hint. Starting from your partial fraction decomposition, we have that
$$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.
add a comment |
up vote
1
down vote
Hint. Starting from your partial fraction decomposition, we have that
$$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.
add a comment |
up vote
1
down vote
up vote
1
down vote
Hint. Starting from your partial fraction decomposition, we have that
$$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.
Hint. Starting from your partial fraction decomposition, we have that
$$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.
answered yesterday
Robert Z
90k1056128
90k1056128
add a comment |
add a comment |
up vote
0
down vote
Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}
add a comment |
up vote
0
down vote
Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}
add a comment |
up vote
0
down vote
up vote
0
down vote
Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}
Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}
answered yesterday
José Carlos Santos
139k18111203
139k18111203
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004916%2flaurent-series-of-fracz-12z2-z-6-for-z-14%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
BTW, $f$ is not a polynomial.
– lhf
yesterday