Set theory, functions and inverses
up vote
0
down vote
favorite
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
New contributor
add a comment |
up vote
0
down vote
favorite
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
New contributor
Inverse defined from the range of the given function is a function.
– Thomas Shelby
yesterday
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
New contributor
I'm doing an intro course on set theory and have the question if the inverses of the surjective functions in the sets A={a, b}and B= {c, d, e} are also functions.
So far, I thought that the inverse of a function f(x) for example, is f⁻¹(y), meaning that every function also has an inverse (which is also a function).
Given that this would make the question rather redundant, I'm not quite sure in my assumption anymore, so I would be glad, if someone could verify or falsify (and explain it properly) it.
functions elementary-set-theory inverse-function
functions elementary-set-theory inverse-function
New contributor
New contributor
New contributor
asked yesterday
K. Meyer
11
11
New contributor
New contributor
Inverse defined from the range of the given function is a function.
– Thomas Shelby
yesterday
add a comment |
Inverse defined from the range of the given function is a function.
– Thomas Shelby
yesterday
Inverse defined from the range of the given function is a function.
– Thomas Shelby
yesterday
Inverse defined from the range of the given function is a function.
– Thomas Shelby
yesterday
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
add a comment |
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
add a comment |
up vote
0
down vote
up vote
0
down vote
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
A relation is a set of ordered pairs, and it's inverse is the following relation:
$$R^{-1}:={(y,x)|(x,y)in R}$$
And $R$ is called a function if $forall x,y_1,y_2$, $(x,y_1)in R land (x,y_2)in R implies y_1=y_2$. In the case of functions, we can always define a formal inverse, and we call a function $f$ injective if it's formal inverse is also a function. And not all of the surjections are injections, for example let
$$f:={(a,c),(b,d),(a,e)}$$
Now, $f$ is a surjection from $A$ to $B$, but it's not an injection, because it's inverse is not a function.
answered yesterday
Botond
4,9632732
4,9632732
add a comment |
add a comment |
K. Meyer is a new contributor. Be nice, and check out our Code of Conduct.
K. Meyer is a new contributor. Be nice, and check out our Code of Conduct.
K. Meyer is a new contributor. Be nice, and check out our Code of Conduct.
K. Meyer is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005039%2fset-theory-functions-and-inverses%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Inverse defined from the range of the given function is a function.
– Thomas Shelby
yesterday